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Abstract
QMotor 3.0 provides a versatile framework for the implementation of advanced control
algorithms as C++ programs. The QMotor 3.0 graphical user interface (GUI) integrates
functionality for the testing and tuning of these control programs. In addition, it also provides
advanced data logging, plotting, and data exporting capabilities. By implementing control
programs on a real-time PC operating system (OS), QMotor 3.0 eliminates the need for DSP
boards. QMotor 3.0's high performance and flexibility allow for the implementation of many
different control applications ranging from simple PD control routines to complex, nonlinear,
multidimensional control algorithms. The use of C++ for control programs allows for high
execution speeds and the implementation of very complex control structures. QNX as the
operating system gives high reliability with low overhead such that the control programs can run
in an embedded environment. A client/sever architecture decouples the control program from the
hardware so that QMotor 3.0 can easily be extended to work with new hardware.

1 Introduction
This paper describes QMotor 3.0, a QNX based object-oriented (OO) single-processor software
environment that allows the implementation of real-time control programs on standard Intel
processor based personal computers (PCs). The control program, as well as the development
tools and graphical user interface (GUI) can all execute simultaneously on the PC due to the
deterministic response of the OS. This architecture replaces the traditional multiprocessor
Host/DSP board architecture used in control applications. Advantages of a single-processor
system include reduced cost and complexity, as well as increased flexibility and upgradability.
Since replacing QMotor 2.0, QMotor 3.0 has been used successfully in all of the control
experiments performed by the Clemson Control and Robotics group, including motor and robot
control, active magnetic bearing experiments, web handling, vibration control in flexible
structures,etc. Some of these experiments are documented in [1], [2], [3] and [4]. The use of
object oriented programming (OOP) techniques along with a client/server architecture allow
QMotor 3.0 to be used with many types of hardware devices.

1.1 Previous Research
WinMotor, QMotor 1.0, and QMotor 2.0 are described in [5]. WinMotor and QMotor 1.0 are
multi-processor heterogeneous PC Host/DSP single board computer (SBC) systems, where the
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control executes on a DSP SBC, while a Host PC is used for GUI (plotting), data logging, and
gain tuning functions.

QMotor 2.0 is a single-processor system developed by the authors of this paper that executes
both the control and the GUI on the same processor. Though [5] discusses QMotor 2.0 in detail,
a brief description of the system will be given here in order to facilitate discussion of QMotor
3.0. QMotor 2.0 is based on procedural/functional programming techniques, while QMotor 3.0 is
based on OOP techniques to overcome some of the disadvantages of QMotor 2.0. Figure 1 below
depicts the QMotor 2.0 architecture.
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Figure 1 - QMotor 2.0 Architecture

The development of QMotor 2.0 was motivated by the high cost and complexity of multi-
processor heterogenous (PC Host/DSP SBC) systems. The use of modern high-speed consumer
grade PC CPUs coupled with a PC real-time OS allowed the development of a system that
implements the control algorithm as well as the user interface on one CPU. This reduced the cost
and complexity of the system, for developers as well as users.

The QMotor 2.0 architecture consists of the control program (QC), the hardware server for
the MultiQ motion control board (QS), the network interface (QN), and the GUI (QG). These
four programs all executed on the same processor and provided the framework needed to
implement and tune control programs. The user fills out certain C language functions in QC (the
control program) to implement the control computation. QMotor 2.0 was used to implement
many published control experiments at Clemson University, some of which are documented in
[6], [7], [8], and [9].

Several disadvantages of QMotor 2.0 became apparent with use. QMotor 2.0 only supported
the MultiQ motion control board for hardware interfacing. Support of additional hardware had to
be added later, and was hard-coded into the system. For example, a special version of QMotor
2.0 had to be built to support line-scan cameras for a mag-bearing experiment [10]. Another
experiment required more than 8 D/A channels thus mandating the use of 2 MultiQ boards, and
requiring a new version of QMotor 2.0. A robot control experiment that required special
initialization of a motor drive via serial port required yet another modification of the QMotor 2.0
GUI (QG). All of these modifications were hard-coded into QMotor 2.0 programs, and produced
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multiple versions of the system, which resulted in confusion and higher maintenance costs (bug
fixes and updates had to be applied to all of the versions instead of to just one version). The
functional programming techniques used to develop QMotor 2.0 did not allow the user to easily
add support for new hardware interfaces (e.g.cameras, fast A/D boards, more I/O channels,etc.)

2 Object Oriented Programming
Development of QMotor 3.0 was motivated by the success of QMotor 2.0, and was shaped
partially by the disadvantages of that system. QMotor 3.0 uses OOP techniques to overcome the
disadvantages of QMotor 2.0.

2.1 Code Reuse
OOP techniques allow for code to be reused, which means only one copy of a certain piece of
code needs to be maintained. The extensions to QMotor 2.0 mentioned above required three
slightly different copies of the source code be maintained. Maintaining only one copy of source
code allows bug fixes and improvements to be easily applied to that one copy, and all modules
that use that code benefit.

2.2 Easy Extensibility
The use of inheritance and polymorphism allows the system to be easily extended. Functionality
can be declared in a common base class, and implemented later in derived classes that are
specific to a particular application.

2.3 Disadvantages
There are several popular criticisms of OOP. Two of these, which are applicable to this
discussion, are excessive complexity and performance degradation. Excessive complexity can
result from the overuse of classes, operator overloading, inheritance,etc. When OOP features are
abused to an extent where they make the code more complex than it ought to be, or when
programmers try to take advantage of obscure and confusing capabilities of the programming
language, the resultant code becomes more confusing and complex than a procedural version.

Performance degradation is a serious concern in real-time applications. Some OOP language
features depend on run-time processing. Other features simply add overhead to typical
operations. Calling a method of an object, as opposed to simply calling a global function, incurs
extra overhead of at least one extra jump (depending on the compiler). Assignments in C++ may
cause a copy constructor to be called, requiring a function call, where a simple C assignment
might translate to one assembly language instruction. The key to taking advantage of OOP
functionality in real-time programming is to recognize the performance pitfalls, and avoid them.
When implementing QMotor 3.0 in C++, we used the term “sane C++” to refer to features of the
language that do not incur a significant runtime performance penalty, but contribute significantly
to the readability, maintainability, extensibility, portability, and reusability of the code.

Another performance concern is raised when template functions and classes are used.
Templates are instantiated by the compiler for each specific type used. While the programmer
only maintains one copy of the template code, increasing the maintainability and extensibility of
the code, the compiler replicates the code many times, increasing the size of the executable



4

program. This causes more memory to be used during program execution, and can even impact
performance by causing CPU cache misses simply because the executable can not be contained
in the cache. While clever means could be used that would result in only one copy of the code,
these means would bypass the advantages templates provide in terms of simplicity and type
checking. For this reason, templates are used in QMotor 3.0, where appropriate.

2.4 OOP Techniques Used in QMotor 3.0

2.4.1 Inheritance
Inheritance is used to eliminate duplicate functionality in related objects. For example, sorting a
list of variables alphabetically is done in the same way regardless of whether the list is a list of
control parameters or log variables. Using an abstract data type (ADT) to represent a generic
variable, and implementing the sorting functionality at that high level eliminates the need to
implement separate methods for sorting control parameters and log variables.

2.4.2 Polymorphism
Polymorphism allows objects that are derived from a common ancestor to behave differently
when the same method is called. For example, if the objects Rectangle and Triangle are derived
from Shape, and Shape has acalculateArea() virtual function, Rectangle and Triangle can
provide different results to the same function (calculateArea() ). This mechanism provides a
simple, common interface at the higher level, allowing more specific implementations at a lower
level.

2.4.3 Templates
Templates allow code to be reused in a macro-like manner, while maintaining type checking.
Templates are used when generic operations are to be applied to many different types of data,
and the operations are unaffected by the data types.

3 QMotor 3.0 Architecture
Once again the QNX real-time operating system was chosen as it provides all of the real-time
functionality needed for the system, and has proven to be robust and reliable.

3.1 Hardware Servers
In order to control a physical system, a computer control program must be able to interact with it.
Information about a system is determined through the use of sensors, which measure and report
information about the system (e.g. temperature, force, voltage, current,etc.) Actuators (e.g.
motors, electromagnets,etc.) are used to change the state of a system.

Sensors may be equipped with a computer interface that processes the sensor data and
provides it to the computer in a simple form. An example of this type of sensor is a force/torque
sensor that processes the raw strain gauge data, and presents a vector of 3 biased forces and 3
biased torques, in IEEE floating point format, in registers on an ISA bus controller card. Another
example is a high-speed video camera coupled with a high-speed framegrabber. This sensor
presents the computer with an array of digital values corresponding to the brightness of each
pixel in the image. The computer may read the digital values of the pixels directly from the
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framegrabber's memory. This type of sensor reduces the computational burden on the computer
by processing the sensor data, but require sophisticated software interfacing. Other sensors
provide a simpler interface, generally converting some physical quantity (temperature, force,
distance,etc.) into a voltage, or into a digital pulse train, which must then be read by a general
purpose interface (e.g. an A/D converter, encoder input channel,etc.) This type of sensor
interfaces to the computer via an A/D board, encoder interface board,etc. In both cases, sensors
provide inputs through some interface hardware into the computer, for use as inputs to a control
program. Actuators fall into similar categories. Simple actuators are much more prevalent (e.g.
motors, solenoids,etc.), and are usually interfaced through a D/A or digital output board.

The software that allows a control program to communicate with the hardware that interfaces
sensors and actuators to the computer has been traditionally called a device driver. Drivers
generally reside in an operating system's kernel, as in UNIX and MS Windows NT, and as such
are difficult to write and maintain. Writing a device driver for a sensor/actuator interface would
generally be considered overkill. In addition, accessing a kernel-mode device driver from a user-
mode program requires a system call, which can incur significant overhead. This is shown in
Figure 2 below.
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Figure 2 - Kernel Mode Device Driver

Consequently many device manufacturers provide libraries that are linked to the user's
control program. These libraries provide access to the hardware interface. This method is far
simpler than writing a kernel-mode device driver. It is also more efficient, as there is no need to
trap into the kernel. It is also less secure. The device interface library must access hardware
directly, therefore it must have privileged access (e.g.run asroot). In addition, since it is linked
to the user's control program, the user's control program must run in a privileged mode, and is
capable of crashing or corrupting the entire system. Finally, since the control program is linked
to the library, only one control program may execute at once, otherwise several programs may
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attempt to communicate with the hardware interface simultaneously. This architecture is shown
in Figure 3 below.
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Figure 3 - User Mode Hardware Interface Library

QNX, being a microkernel based OS, does not provide for kernel-mode device drivers. The
QNX microkernel provides only minimal functionality (scheduling, IPC,etc.) Programs that
serve the purpose of device drivers run in user mode. Under QNX, these programs are better
called "device servers." An advantage of running device drivers in user mode is that they can be
started and stopped at any time, without affecting the kernel or other processes. Another
advantage is that they provide services to processes located on other computers on the network,
without the need for a network API. QNX uses message passing as its primary IPC mechanism.
Message passing is supported inside the microkernel, and is network transparent (i.e. there is no
difference in the API for sending a message to a process on the same node, or to a process on a
different node on the network). Consequently, another advantage is that QNX device drivers can
be accessed from any node on the QNX network with the same API as local device drivers (e.g.
open ("/dev/ser1","r") opens the primary serial port on the local node,open

("//10/dev/ser1","r") opens the primary serial port on node 10). Traditional API calls such
as open()and write() are translated into messages to the device drivers. While this does incur
some overhead, the efficiency of the QNX microkernel makes it a viable implementation.
Consequently, QMotor 3.0 uses a client/server architecture with respect to interface hardware, as
shown in Figure 4.
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Figure 4 - Hardware Client/Server Architecture

The first step in writing a hardware server is to write the traditional library mentioned above,
called ahardware interface class. This is a C++ class that provides all of the functionality
needed to talk to the hardware (e.g. functions such asinport() , outport() , DMA transfers,
interrupt service routines,etc. are implemented here). Users may choose to link directly to the
hardware interface class, however, this is not recommended. Using the hardware interface class
still requires much specific knowledge about the hardware. This class is intended only as a tool
for those who will write hardware servers. Once a hardware interface class has been developed
and tested for a certain hardware interface, a hardware server is written.

One of the advantages of OOP is code reuse. One way to reuse code is to identify data
members and methods that are common to several objects, and design a superclass that contains
those methods and members. The more specific objects are then derived from this superclass,
and they provide the device specific members and methods.

Our experience has shown that most control experiments require only a few general types of
hardware interfaces, listed below.
1. A/D Channels convert an analog voltage signal into a digital representation that can be read

by a computer program.
2. Digital Input Channels can provide boolean inputs (on/off).
3. D/A Channels convert a number stored in the computer's memory to an analog voltage.
4. Digital Output Channels provide boolean outputs (e.g. toggle a relay, or some other on/off

actuator).
5. Encoder Inputs are required for measuring the angular position of motors and other devices.
6. Hardware timer with ISA bus interrupt generation (for timing).
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Items 1-5 give rise to the IOBoardServer abstract class, and item 6 yields the TimerServer
abstract class. In OOP terminology, and abstract class (AC) is a superclass that contains only
pure virtual methods, so that an abstract class can never be instantiated. Only classes derived
from the abstract class may be instantiated.

3.1.1 IOBoardServer Abstract Class
The IOBoardServer AC provides the generic data and methods needed for any I/O board server.
Some of the data members include the name of the server, the frequency at which it will run, the
priority at which it will be scheduled, and other information about the I/O board (# of encoder
inputs, # of digital inputs, # of A/D inputs,etc.)

The only methods the AC provides are a constructor, a destructor, status information
methods, and adoMessageLoop () method. ThedoMessageLoop () method is pure virtual,
which means that it is not defined in the AC, it must be defined by classes that are derived from
the AC. This is because each particular I/O board server will have a different implementation
since the board hardware is different. Examples of classes derived from the IOBoardServer are
discussed below.

3.1.1.1 MultiQServer
The MultiQServer is a hardware server for Quanser Consulting’s MultiQ 1, 2, and 3 boards.
These boards have 8 digital inputs and outputs (16 for the MultiQ 1), 8 A/D, 8 D/A, 3 timers, and
anywhere from 0 to 6 (or 8 for the MultiQ 3) encoder channels. The MultiQServer class uses a
MultiQ hardware interface class to communicate with the MultiQ board hardware. The
constructor for the MultiQServer class first calls the IOBoardServer constructor, passing the
generic information (e.g. server name, frequency,etc.) to the superclass. However, the
MultiQServer constructor accepts additional board-specific parameters (e.g.base address of the
board, IRQ used for the timer, # of A/D channels, # of D/A channels,etc.) The pure virtual
doMessageLoop() method declared in the AC is defined here. Pseudocode for this function is
shown below.

do forever
wait for a tick from the timer source
if server is falling behind report the error and quit (this

would be caused if the server is performing too many
operations to complete within one sample period)

read the encoders, a/d, digital inputs
write the digital outputs and d/a

The order of operations is not exactly as listed above. Operations are interleaved so that time
waiting for A/D conversions to complete is minimized. An A/D read requires 19 microseconds.
Encoder reads and digital inputs/outputs as well as analog outputs require 5 microseconds. The
server initiates an A/D read on one channel, then writes a D/A channel, reads an encoder, and
then checks on the status of the A/D. This is repeated so that non A/D operations are interleaved
with the A/D reads.

3.1.1.2 STGServer
The STGServer works with the ServoToGo S8 model 1 and 2 motion control board. This board
provides 8 A/D, 8 D/A, 8 encoder inputs, 32 bits of digital input/output, one timer that can



9

trigger an ISA bus interrupt, and a watchdog timer. The constructor for this server is similar to
the MultiQServer constructor, but requires additional parameters because of the additional
capabilities of the S8 board (e.g. the digital bits can be configured as inputs or outputs).
Programming the S8 is more complicated than programming the MultiQ, however this is hidden
from the user due to the use of the hardware client/server architecture. ThedoMessageLoop()

function of the STGServer is similar to that of the MultiQServer.

3.1.1.3 CBDIOServer
The CBDIOServer works with the ComputerBoards CBDIO24/CTR3 boards. This board
provides 24 bits of digital I/O (which can be configured as input or output), 3 counters, and the
ability to generate an ISA bus interrupt when the count reaches zero. The CBDIOServer class
derives from the IOBoardServer AC. Its constructor is similar to the MultiQServer constructor,
in that it accepts board specific parameters (base address, IRQ of the timer,etc.) However it does
not have any A/D, D/A, or encoder capabilities. ThedoMessageLoop () method declared in the
AC is defined here.

do forever
wait for a tick from the timer source
if server is falling behind report the error and quit (this

would be caused if the server is performing too many
operations to complete within one sample period)

read the digital inputs
write the digital outputs

3.1.1.4 FastADServer
The MultiQ and STG S8 boards can read 8 channels of A/D at about 5KHz maximum if none of
the other board features are used (e.g.A/D, encoders,etc.) There are two variables that determine
this rate. The sample period Ts is equal to some CPU overhead (instructions executing on the
CPU to set up the A/D conversion) called TO added to the actual time for the A/D converter on
the I/O board to complete a conversion (called TC). Upgrading the CPU to a faster clock speed
will decrease TO but will have no effect on TC, which is a function only of the A/D converter. On
modern CPUs, TC dominates TO. The A/D converters on the MultiQ and STG S8 boards require
about 19 microseconds to convert. To read all 8 channels requires 152 microseconds, which
yields a rate of 6.5KHz. The actual rate of about 5KHz is due to overhead, since the 19
microseconds is the time required for one conversion.

When the D/A channels and encoders are also used, these boards can run at a maximum of
about 3KHz. For most control experiments, 3KHz or less is an adequate sample rate. Some
experiments do require a higher rate. One example was an active magnetic bearing experiment
performed at Clemson University. Ideally the sample rate should have been 20KHz. To approach
this rate, faster A/D boards were needed. The ComputerBoards PCI-DAS1602/16 is a 16 channel
200KHz 16 bit resolution A/D board. The maximum acquisition rate of this board can be
achieved only by using large DMA buffer transfers. This is inappropriate in a control situation,
where each sample must be read and acted on during each control period. The real sample rate
achieved with this board on a Pentium II 266 was 12KHz for reading 16 channels. Compared to
about 1.5KHz for 16 channels (2 boards) with the other boards, this is a significant increase.
Note that due to the use of client/server architecture and OOP techniques, the control programs
did not need to be modified to take advantage of this high-speed A/D board.
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3.1.2 IOBoardClient
The hardware servers listed above are programs that communicate with hardware directly. The
user writes a control program, which must somehow interact with the hardware. Control
programs use an IOBoardClient class. This is not an AC, like IOBoardServer, this is a class that
can be instantiated. It is a general class that can work with any IOBoardServer derived server.
This means that if a control program uses the IOBoardClient class to communicate with a
MultiQServer, it does not need to be changed to communicate with an STGServer or a
CBDIOServer. If the control program did not use the client/server model, and rather used the
hardware interface class (or some other statically linked library), this would not be possible. The
control program would have to be modified and recompiled in order for it to work with a
different I/O board, as in QMotor 2.0. Table 1 lists the methods provided by the IOBoardClient
class.

Table 1 - IOBoardClient Class Methods

Method Prototype Description
IOBoardClient (char *servername) Constructor. Connects the client to the named

IOBoardServer. This could be a MultiQServer,
STGServer, CBDIOServer, FastADServer or
any other server derived from the
IOBoardServer base class.

~IOBoardClient () Destructor. Disconnects the client from the
server.

int isStatusOk(), int isStatusError()... Status inquiry methods.
int getNumEncoders () Returns how many encoders this I/O board has

(0 – none). A STGServer would return 8, a
FastADServer would return 0.

int getEncoderValue (int channel) Returns the current encoder count for the given
encoder channel.

int getEncoderIndexValue (int channel) Returns the encoder count that was latched
when an index pulse last occurred (not
supported by all boards).

void setEncoderValue (int channel, int value) Preset the encoder value for the given channel.
void setEncoderIndexValue (int channel, int
value)

Preset the encoder index value for the given
channel.

int getNumAdc () Returns the number of A/D channels on used
by the server. On an STG S8 could return 0 –
8, depending on how the server was started. On
a FastADServer could return 0 – 16. Running a
server with only the # of A/D channels needed
active allows the server to run faster.

int getNumDac () Get the # of D/A channels the server supports.
On an STG S8 this could be 0 – 8,etc.

double getMinDacVoltage () Get the minimum output voltage that his server
supports (STG S8 would be –10, on a MultiQ
this would be –5).
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double getMaxDacVoltage () Get the maximum output voltage that his
server supports (STG S8 would be +10, on a
MultiQ this would be +5).

double getMinAdcVoltage () Get the minimum input voltage that this server
supports. On an STG S8 this would be either –
5 or –10 (jumper settable). On a MultiQ this
would be –5.

double getMaxAdcVoltage () Get the maximum input voltage that this server
supports. On an STG S8 this would be either
+5 or +10, on a MultiQ this would be +5.

double getAdcValue (int channel) Returns the current voltage read by the given
A/D channel.

void setDacValue (int channel, double voltage) Writes the given voltage out to the given D/A
channel.

int getNumDiginBits () Returns the number of digital input bits. On an
STG S8 this could be up to 32, on a MultiQ
this is 8.

int getNumDigoutBits () Returns the number of digital output bits. On
an STG S8 this could be up to 32, on a MultiQ
this is 8.

unsigned char getDiginByteValue (int byte) Return the value of the given digital input byte.
int getDiginBitValue (int bitPosition) Return the value (0 or 1) of the given digital

input bit.
void setDigoutByteValue (int byte, unsigned
char value)

Write the given byte to the given digital output
byte.

void setDigoutBitValue (int bitPosition, int
value)

Write the given value (0 or 1) to the given
digital output bit.

The following simple program shows how to write –3 volts to D/A channel 0.

#include “IOBoardClient.hpp”

main ()
{

IOBoardClient iobc (“iobs0”);

iobc->setDacVoltage (0, -3);
}

Note that this program will work unchanged with both MultiQ or STG S8 boards, or any other
I/O board that has at least one D/A channel.

3.2 Timer Servers
To implement a control algorithm in the QMotor 3.0 environment, a timer server must be
executing in order to provide an accurate clock signal. Timer servers provide QNX proxy
messages to their clients at a desired frequency. For example if the control frequency is selected
as 2 KHz, then the control program executes every0.5 ms. Each timer server has one clock
source but may have multiple clients. Clients ask the timer server to "wake" them periodically at



12

any frequency that is an integer divisor of the timer server's clock source. The clock source may
be a software source such as a QNX timer or a hardware source such as the MultiQ board's timer
circuitry.

3.2.1 TimerServer Abstract Class
The TimerServer AC has one timing source, and can service many timer clients. Each time the
timing source ticks, the server executes, awakens any clients that need to execute, and exits.

In order for the control program to run deterministically, that is at a fixed frequency,
regardless of all other system activity, a hardware timer interrupt is used. A hardware ISR must
be used because hardware interrupts preempt all processes, including the highest priority
processes. QNX provides the facility to make one interrupt the highest priority interrupt in the
system. This interrupt is assigned to a hardware timer IRQ. Note that currently timer clients must
execute at frequencies that are integer divisors of the timer server’s base frequency. A timer
server that runs at 3KHz could have clients running at 3KHz, 1.5KHz, 1KHz, 600Hz,etc. but not
2.9KHz.

Timer servers that have a hardware timer component attach an ISR to the timer’s IRQ. This
ISR increments a sequence counter in shared memory, and triggers the QNX proxy that scans
through the list of connected clients and wakes those that need to run.

3.2.1.1 MQTimerServer
The MultiQ board provides one oscillator that is tied to the input of three counters. Each counter
can generate an ISA bus interrupt on terminal count. QMotor 3.0 applications typically only use
one timer server, so only one of these interrupts is used.

3.2.1.2 STGTimerServer
The STG S8 board has one timer, which serves as the timing source for the timer server, as well
as for the internal functions of the board. This board can generate one ISA bus interrupt on
terminal count.

3.2.1.3 CBTimerServer
The CIO-DIO24/CTR3 board provides one oscillator that can be connected to up to three
counters (in a daisy chain configuration) to produce very low frequencies. This board can
generate one ISA bus interrupt on terminal count.

3.2.1.4 QNXTimerServer
While hardware timers are required to guarantee that the timer server has highest priority, in
situations where timing is not that critical and the frequency will not exceed 2KHz, a QNX
software timer can be used. The QNXTimerServer uses a QNX timer to wake its clients. Note
that a QNXTimerServer may fall behind with no way to detect this condition, and should not be
used for hard real-time applications where missed control cycles would impact performance. All
hardware interrupts will preempt a QNXTimerServer and so a very active PCI network card or
large amounts of disk activity could starve a QNXTimerServer.
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3.3 TimerClient
All timer servers are accessed through the generic TimerClient class. A program can use the
TimerClient class to insure it executes at a fixed frequency, and to detect if the computation it is
performing is too slow to execute in one control period. One advantage of using a TimerClient is
that the program does not need to be recompiled or modified in order to use a different timing
source (e.g. MultiQ board, STG S8, QNX software timer,etc.) Table 2 lists the methods
provided by the TimerClient class.

Table 2 - TimerClient Class Methods

Method Prototype Description
TimerClient (char *timerServerName, double
frequency, int priority = -1)

Constructor. Connects the client to the named
TimerServer. This could be a MQTimerServer,
STGTimerServer, CBDIOTimerServer,
QNXTimerServer, or any other server derived
from the TimerServer base class. The client
will verify that the server can support the
specified frequency. The optional priority
parameter allows the client to request a given
process priority from the server (see the
setprio() QNX library function). A priority of –
1 indicates the priority of the client should not
be modified.

~TimerClient () Destructor, disconnects from the timer server.
resetBaseTicks (int ticks) Resets the server’s tick count for this client.

Should be called right before starting the
control loop execution.

start () Tells the server to start waking this client up.
stop () Tells the server to stop waking this client up.
pid_t waitForTick (void *buffer=0, int
sizeOfBuffer=0)

Waits for a tick from the timer server, or for
asynchronous messages from other processes.
Returns –1 and sets status to OK if the client is
running on time. If an asynchronous messages
was received, returns the PID of the sending
process. Falling behind the timer, or problems
with the server’s base timer are reported by an
error status.

3.4 ControlProgram
The ControlProgram class provides a framework for developing control programs. All of the
details of running in real-time, logging variables, changing control parameters,etc. are handled
by the class. Certain methods are provided by the class, and others must be written by the user.
Table 3 below lists the methods provided by the class.

Table 3 - ControlProgram Class Methods
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Method Prototype Description
ControlProgram (int argc, char *argv[], char
*timerServerName, int priority)

Constructor. The command line arguments are
passed, as is the name of the timer server to
connect to, and the desired priority of the
control program.

~ControlProgram () Destructor.
registerLogVariable (double *address, char
*name, char *desription=””, int rows = 1, int
cols = 1)

This function is called to register a variable as
a “log variable”. Log variables may be logged
in real time during the control run. Scalers and
1 and 2 dimensional arrays are supported.

registerControlVariable (double *address, char
*name, char *description=””, int rows = 1, int
rows = 1)

Called to register a variable as a “control
parameter.” Control parameters may be
changed during the control run, and are
typically used for tuning gains, though they
may have other uses. Scalars and 1 and 2
dimensional arrays are acceptable.

setEventTriggeredLogMode (char
*variableName)

Sets the logging mode to event triggered. Use
enable/disableLogging() in the control loop to
start/stop logging an event triggered variable.
This is useful if you’re interested in logging
data after some event occurs and you don’t
know when the event will occur.

enableLogging (char *variableName) Enable logging for the given variable. Used to
enable/disable logging of a variable from
within the control loop, useful for even
triggered logging.

disableLogging (char *variableName) Disable logging for the given variable.
setContinuousLogMode (char *variableName) Log the last N seconds of data for this variable.

This is useful if you want to keep the last N
seconds of data, prior to the end of the control.

setTimedLogMode (char *variableName) This is the most common logging mode. This
variable will be logged for a certain time,
starting at a certain time.

setNoLogMode (char *variableName) This is variable will not be logged.
setLogStartTime (char *variableName, double
logStartTime)

When logging in timed mode, start logging this
variable at the given time (in seconds).

setLogDuration (char *variableName, double
logDuration)

All log modes must specify a duration – this is
used to allocate the memory for the log. The
total log memory for this variable will be
duration times frequency.

setLogFrequency (char *variableName, double
logFrequency)

Set the frequency at which the variable will be
logged. The log frequency must be an integer
divisor of the control frequency (e.g. if the
control frequency is 1000, you may log at
1000, 500, 250, 200, 100,etc. Hz, but not at
900).
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setWatched (char *variableName) Set this variable to be watched during program
execution. The supervisor may read its value at
any time.

setNotWatched (char *variableName) Do not watch this variable during the control
run.

mainLoop () Call this function to begin execution of the
main control loop.

Table 4 lists the data members defined in the ControlProgram class that can be used by the
user.

Table 4 - ControlProgram Class Data Members

Member Declaration Description
double d_controlFrequency This is the frequency in Hz at which the

control will run.
double d_controlPeriod Inverse of the control frequency, in seconds.
double d_controlDuration How long the control will run (in seconds).
int d_runForever Set to 1 to indicate an infinite control run, set

to 0 if this is a timed run (and also set
d_controlDuration).

double d_elapsedTime Elapsed time in seconds since the control
started.

int d_elapsedTicks Elapsed ticks since the control started. One tick
is the represents the passing of one control
period.

Table 5 lists the methods that he user must write.

Table 5 - ControlProgram Class Virtual Functions User Must Write

Method Prototype Description
int startControl () This function will be called when the user

presses the START button in the GUI. It is
called each time the control is started.

int control () This function implements the control loop. Do
your inputs, control computations, and outputs
here. control() will execute at the given control
frequency. Return 0 to continue running the
control, or non-zero to abort the control.

int stopControl () This function is called when the control run
ends (either because a timed run has finished,
the user has pressed the STOP button in the
GUI, or some other condition has caused the
control to stop). This is a good place to reset
the system to a know state (e.g. zero out the
D/A channels,etc.)

int handleMessage (pid_t pid, char *message) Return 0 to continue running, or non-zero to
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stop the control. This function will be called if
the control program receives a QNX message it
does not recognize (e.g.it is not from the timer
or a server). This function can be left out, or
can be used to implement IPC with other
processes in your control loop.

Appendix A lists a simple control program that connects to a MultiQ timer server and a
MultiQ IO board server.

3.5 Supervisor
The Supervisor class provides a framework for writing user interfaces that supervise the
execution of control programs. The QMotor GUI is a Supervisor. If a user wants to develop a
custom GUI for use with a QMotor control program, he may use the Supervisor class to do so.
The Supervisor class provides the following methods that can be used by a derived class.

Table 6 - Supervisor Class Methods

Method Prototype Description
Supervisor () Constructor.
~Supervisor () Destructor.
loadControlProgram (char
*controlProgramFullPath)

Loads the given control program.

unloadControlProgram () Unloads the current control program.
saveConfiguration (char
*configFileFullPath)`

Saves the current configuration to the given
configuration file.

startControl () Starts the execution of the main control loop. In
the QMotor GUI this is called when the user hits
the START button.

stopControl () Stops execution of the control program.
char *exportRunToMatlab (char
*matlabFileFullPath, char *exportingClass =
0)

Exports the data from the current control run to a
MATLAB file.

char *exportLogVariablesToMatlab
(ofstream &matlabFile)

Exports all logged variable data to a MATLAB
file.

char *exportControlParametersToMatlab
(ofstream &matlabFile)

Exports the current values of the control
variables to a MATLAB file.

receiveEnvironmentParameters

()sendEnvironmentParameters ()

Sends/Receives the list of environment
parameters to/from the control program.

sendLogVariableList ()

receiveLogVariableList ()

Sends/Receives the list of log variables to/from
the control program.

sendControlParameterList ()

receiveControlParameterList ()

Sends/Receives the list of control parameters
to/from the control program.
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cleanUpAfterControlProgramDied () Called if the control program crashes. Should
clean up all memory,etc.

3.6 Utility Classes
QMotor relies on several utility classes. The IOBoardClient class, discussed previously, is a
utility class. The other utility classes used provide list management, shared memory
functionality, filtering,etc.

4 The QMotor 3.0 GUI
The QMotor GUI allows the user to interact with the control program. It is used to start and stop
a control program, tune gains online, and log and plot data in real-time.

4.1 Main Window
From the main window, the user can load a program, set the control duration and control
frequency, and start executing the desired control algorithm. In addition, the main window also
allows the user to open the following sub-windows: i) thelog variable window, ii) the control
parameter window, iii) the watch window, and iv) numerousreal-time plot windows. The main
window is shown in Figure 5.

Figure 5 - Main Window
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4.2 Log Variable Window
The log variable window (Figure 6) displays a list of all available variables that have been
registered for data logging in the control program. For each log variable, the user can specify the
logging mode, the logging frequency, logging start time, and the logging duration.

Figure 6 - Log Variable Window

4.3 Control Parameter Window
The control parameter window (Figure 7) displays a list of all variables that have been registered
as control parameters in the C++ control program. From this window, the control parameters can
be adjusted to various values without recompiling the C++ control program (note: the control
parameters can only be set to constant values; no complex functions are permitted). Control
parameter values can be modified while the control program is running (online parameter
tuning).

Figure 7 - Control Parameter Window

4.4 Watch Window
The watch window (Figure 8) allows the user to see the real-time values of selected log variables
during control execution. Note that the last logged value of a variable is displayed in the watch
window at the termination of the control cycle.
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Figure 8 - Watch Window

4.5 Plot Windows
The QMotor 3.0 GUI allows the user to monitor logged variables during control execution in the
form of numerous real-time plot windows (Figure 9). All log variables appearing in thelog
variables windoware available for plotting purposes (note: a variable is only available for
plotting if the variable is set to be logged from thelog variable window). Any number of plot
windows may be open at once, and any number of variables may be plotted in each window.
Numerous auto-scaling options are available. The plot windows may be zoomed and panned, and
provide very powerful plotting options, as well as export to MATLAB.

Figure 9 - Plot Windows
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5 Conclusion
This paper documents the successful use of OOP techniques in the development of QMotor 3.0.
These techniques have allowed QMotor 3.0 to be flexible and easily extensible. Support for
several new hardware interface boards has been added after QMotor 3.0 was finished, simply by
providing new hardware servers that are compatible with the IOBoardClient class. This did not
require any modification of the QMotor 3.0 source code and user control programs did not need
to be recompiled to take advantage of new interface hardware. Multiple hardware interface
boards can be used by one QMotor 3.0 control program by simply starting multiple hardware
servers. This is in contrast to QMotor 2.0, where the source code itself had to be modified to
accommodate new hardware or multiple boards.

QMotor 3.0 has been used as the basis for a robot control system, called the QMotor Robotic
Toolkit, which also uses OOP techniques to provide a system that can control Puma, Barrett and
IMI robots and is extensible to any robotic system. The QMotor RTK was initially developed
using Puma manipulators, and was later extended to the Barrett WAM and IMI Direct Drive
robot. QMotor 3.0 has been used by Clemson University and others to implement a wide variety
of control algorithms, some of which are documented in [1], [2],.[3], and [4].

A new version of the QNX real-time operating system will be released shortly. This version,
called the QNX Real-Time Platform (RTP), has many advantages over the old QNX 4.2x OS,
including support for symmetric multiprocessing (SMP), and free availability for non-
commercial use. QMotor 3.0 will be ported to this new OS, with support for SMP added to allow
control programs to take advantage of multiple processors. Note that this is a homogenous
multiprocessor system, which is much simpler and less expensive that the old Host PC/DSP SBC
heterogeneous systems used in the past. QMotor 3.0 will also be enhanced for use in industrial
and embedded systems, with the ability to connect the GUI to an already executing control
program without stopping the control. This would aid in debugging or tuning mission critical
control programs that can not he started and stopped.
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6 Appendix A - Sample QMotor 3.0 Control Program

///============================================================================
/// file : MyControlProgram.hpp
///----------------------------------------------------------------------------
/// Class definition for the user's control program.
///============================================================================

#include "ControlProgram.hpp"
#include "IOBoardClient.hpp"

#include <iostream.h>
#include <conio.h>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>
class MyControlProgram : public ControlProgram
{

protected: // Protected data

// Log Variables
double d_vin;
double d_vout;
double d_vinOverTwo;

// Control Parameters
double d_scaleFactor;
double d_offset;

// Hardware Servers
IOBoardClient *d_iobc;

public: // Public methods

MyControlProgram
(

int argc, // # of cmd line arguments
char *argv[], // Array of cmd line arguments
char *timerServerName="ts0", // Name of the timer server providing timing
char *ioboardServerName="mqs0",// Name of the IOBoard server providing I/O
int priority = 27

);
// Constructor, initialize hardware servers, etc. here. Called only once,
// when the control program is loaded.

~MyControlProgram ();
// Destructor, do cleanup here. Called only once, when the control program
// is unloaded.

int startControl();
// Called each time the control is started by the Supervisor (eg. the
// START button is pushed. Optional.

int stopControl();
// Called at the end of each control run. Optional.

int control ();
// Main control function. Called each time through the control loop.

int handleMessage (pid_t pid, char *message);
// Called when a message that is not from the Timer server arrives.
// This allows you to receive QNX message from other processes. This
// function is optional.

};



22

///============================================================================
/// name : MyControlProgram
///----------------------------------------------------------------------------
/// input : arg c - # of command line args passed to this program
/// argv - Ptr to array of command line args
/// timerServerName - Name of the timer server which will provide the
/// timing for this control program.
/// Constructor for the user's control program. This is called when the
/// program first starts. Connections to needed servers should be made here,
/// log and control variables are initialized and registered here. Any setup
/// that must occur when the program is first started should be placed here.
///============================================================================

MyControlProgram::MyControlProgram (int argc, char *argv[], char *timerServerName,
char *ioboardServerName, int priority)
: ControlProgram (argc, argv, timerServerName, priority)

{

// Initialize your servers here. I will use one IOBoard server.

d_iobc = new IOBoardClient (ioboardServerName);

if (d_iobc->isStatusError ()) // If couldn't locate the IOBoard server,
{ // set the status and return.

d_status.setStatusError ();
return;

}

// Set control program parameters. If running under a Supervisor (like the
// GUI), these values will be overriden by the Supervisor.

d_runForever = 0;
d_controlFrequency = 100; // Control freq. in Hz
d_controlDuration = 10.0; // Control duration in seconds (-1 = run forever)

// Initialize your control variables here. These must be declared in
// the class definition for this control program (eg. MyControlProgram.hpp)

d_scaleFactor=1.0;
d_offset=0.0;

// Register your control variables. Only registered control variables will
// appear in the Supervisor (ie. the GUI). You do NOT have to register all
// your variables, only the ones you want to change from the GUI. The
// 2nd parameter is the description that will be seen in the GUI.

registerControlParameter (&d_scaleFactor, "d_scaleFactor",
"Amplitude Scale Factor");

registerControlParameter (&d_offset, "d_offset", "DC Offset");

// Initialize your log variables here.

d_vin=0;
d_vout=0;

// Register your log variables. Only registered log variables can
// be logged/plotted by the Supervisor. The 2nd parameter is the
// description that will be seen in the GUI.

registerLogVariable (&d_vin, "d_vin", "Input Voltage");
registerLogVariable (&d_vout, "d_vout", "Output Voltage");
registerLogVariable (&d_vinOverTwo, "d_vinOverTwo", "Half Input Voltage");

d_status.setStatusOk (); // Constructor succeeded
}
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///============================================================================
/// name : ~MyControlProgram
///----------------------------------------------------------------------------
/// Destructor for the user's control program. Called only once, as the
/// control program exits. Put any cleanup stuff that must happen when your
/// conrol program quits here.
///============================================================================

MyControlProgram::~MyControlProgram ()
{

delete d_iobc; // Disconnect from the IOBoard server
}

///============================================================================
/// name : startControl
///----------------------------------------------------------------------------
/// Called each time a control run is started. If running from the GUI, this
/// will be called each time the START button is pushed. Do setup that must
/// occur before each control run here (eg. initializing some counters, etc.)
///============================================================================

int MyControlProgram::startControl() {
return (0);

}

///============================================================================
/// name : stopControl
///----------------------------------------------------------------------------
/// Called each time a control run ends. If running from the GUI, this
/// will be called each time the STOP button is pushed, or when a timed run
/// ends, or when the control aborts itself.
///============================================================================

int MyControlProgram::stopControl() {

d_iobc->setDacValue (0, 0.0); // Zero out the DAC we were using.

return (0);
}

///============================================================================
/// name : stopControl
///----------------------------------------------------------------------------
/// retur n : 0 - Control run may continue, nonzero - Control should stop
/// Called each control cycle. Do your input, control computations, and output
/// here. If you return 0, the control will continue to execute. If you return
/// nonzero, the control will abort. You may want to abort if some error
/// condition occurs (excessive velocity, etc.)
///============================================================================
int MyControlProgram::control ()
{

double factor;

// This simple control just multiples the input of ADC channel 0 by a
// scale factor and adds a DC offset to it, writing the result out to
// DAC channel 0.

// Input
d_vin = d_iobc->getAdcValue (0);

// Control calculations

// d_elapsedTime is provided by the superclass ControlProgram and is the
// time since the control run started (sec)

factor = sin(d_elapsedTime) * d_scaleFactor;
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d_vout = factor * d_vin + d_offset;
d_vinOverTwo = d_vin / 2.0;

// If the output voltage is positive, enable logging of d_vinOverTwo. In
// the log, I will only have values of d_vinOverTwo logged at times
// when the output voltage is positive (event-triggered logging mode).

if (d_vout > 0)
enableLogging ("d_vinOverTwo");

else
disableLogging ("d_vinOverTwo");

// Output
d_iobc->setDacValue (0, d_vout);

return 0;
}

///============================================================================
/// name : handleMessage
///----------------------------------------------------------------------------
/// retur n : 0 - Control run may continue, nonzero - Control should stop
/// This optional function allows your control program to receive QNX messages
/// from processes other than the Timer server. If a msg arrives and it is not
/// from the Timer server, this function will be called to handle it. Based on
/// the message you may choose to stop the control (return nonzero) or continue
/// the control (return 0).
///============================================================================

int MyControlProgram::handleMessage (pid_t pid, char *message)
{

int msg;

msg = *((int *)message); // Convert the msg to an integer
Reply (pid, 0, 0); // Reply to the msg so the sender is unblocked

if (msg == 1) // If the msg was "1" abort the control.
return (1);

return (0); // The control may continue.
}

main (int argc, char *argv[])
{

// Instantiate the control program.
// The first 3 arguments are required (argc, argv, and the name of the timer
// server. The fourth argument and beyond are determined by the user.
// Here it's just the name of the IOBoard server used for I/O. If you use
// additional servers you may pass their names as arguments here.

MyControlProgram cp (argc, argv, "mqts0", "mqs0", 19);

// If couldn't start the control (maybe couldn't connect to one of the
// hardware servers, etc.), abort.
if (!cp.d_status.isStatusOk ())
{

cerr << "Can't start control" << endl;
abort ();

}

// Log input voltage in timed mode, starting at time=0 for 0.02 seconds
// at a logging frequency of 1000 Hz.

cp.setTimedLogMode ("d_vin");
cp.setLogFrequency ("d_vin", 1.0);
cp.setLogDuration ("d_vin", 10.0);
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cp.setLogStartTime ("d_vin", 0.0);

cp.setWatched ("d_vin");

// Log output voltage in ring-buffer mode, storing 0.01 seconds worth of
// log data, at a logging frequency of 1000 Hz. Whenever the control is
// stopped, the log for this variable will have the last 0.01 seconds
// worth of data in it (i.e. data for tfinal through tfinal-0.01 seconds

cp.setContinuousLogMode ("d_vout");
cp.setLogFrequency ("d_vout", 1.0);
cp.setLogDuration ("d_vout", 0.1);

cp.setWatched ("d_vout");

// Log this variable (1/2 the input voltage) at a log frequency of 1KHz,
// storing at most 0.02 seconds worth of log data. The control program
// must explicitly do enableLogging() and disableLogging() to enable and
// disable logging for this variable when an interesting event occurs.

cp.setEventTriggeredLogMode ("d_vinOverTwo");
cp.setLogFrequency ("d_vinOverTwo", 1.0);
cp.setLogDuration ("d_vinOverTwo", 0.1);

cp.setWatched ("d_vinOverTwo");

// This mainLoop() is defined by the superclass ControlProgram. It takes
// care of control program timing, variable logging, etc. It will call the
// user's functions (startControl(), control(), handleMessage(),
// stopControl()) as necessary.

cp.mainLoop();

}
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