
Object-Oriented Techniques in Robot Manipulator Control Software Development 
 

Markus S. Loffler, Darren M. Dawson, Erkan Zergeroglu and Nicolae P. Costescu 

Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634-0915 
[loffler, ddawson, ezerger, ncostes]@ces.clemson.edu 

 

Abstract 
Software development for the control of robotic manipulators is a 
complex task because it requires expertise in many areas (e.g., 
robotics, real-time programming, hardware integration, concurrency, 
etc). Because of this fact, it is difficult to develop a common software 
platform supporting the diversity of robotic research areas and 
robotic hardware. Even though a large number of robotic languages, 
libraries, and tools have been created, they are seldom reused. That 
is, many research teams develop their own software platform from 
scratch because existing platforms are too inflexible with regard to 
modifications and too complex to understand. The authors of this 
paper believe that code reuse is fostered by providing a lightweight 
platform rather than requiring the user to modify a complex system. 
Along this line of reasoning, this paper describes the QMotor Robotic 
Toolkit (QMotor RTK). The RTK is a set of C++ libraries and 
programs that follow object-oriented concepts to ensure code reuse, 
modularity, scalability, and an intuitive code structure. The RTK is a 
homogeneous system that consists only of PC software. The RTK 
includes joint level control programs for the Puma 560 manipulator, 
the Barrett Whole Arm Manipulator (WAM), and the Integrated 
Motion Inc. (IMI) two-link manipulator as well as a joint level 
trajectory generator and a graphical user interface (GUI). 

1 Introduction 
Software development for the control of robotic manipulators is a 
complex task. That is, even for simple pick and place operations, 
the software developer needs to incorporate hardware interfacing, 
concurrency, real-time programming, servo control programming, 
and trajectory generation into the software platform. In more 
advanced applications, manipulators operate based on sensor and 
visual feedback (e.g., to implement visual servoing and force 
based control). Finally, many modern systems provide advanced 
operator consoles based on visual feedback, virtual reality, and a 
graphical user interface. To minimize the development effort, it is 
desired to build on an existing software platform. However, the 
diversity of robotic research areas, applications, and robotic 
hardware has not fostered the development of a commonly used 
platform. 
The necessity for such a platform can be understood by looking at 
our previous work regarding the utilization of robotic 
manipulators for decommissioning tasks [1][2][3]. Our 
disassembly system first utilized the robot control library RCCL 
[4] and a Puma 560 robot. This structure was not flexible enough 
to implement more complex controller types, as required in 
disassembly operations, because the servo level was implemented 
on a proprietary Mark II controller. To increase flexibility, we 
developed a servo control program executing on the QNX 4 real-
time operating system [5] along with an interface to the robot 
control library RCCL. Subsequently, due to the limitations of this 
system, we started over again and ported ARCL [6] to QNX 4. 
Although at all stages of the project, the result was a working 
platform [2][3], each platform had several disadvantages. First, a 
lot of development time had to be spent in areas that were not 
really part of the research issue: Porting libraries, writing 
interfaces between different software packages, studying of code 
written by others, etc. Second, the system was very proprietary to 

the application and the hardware environment. For example, later 
in this project we wanted to integrate the WAM [7] into our 
disassembly system. This modification would require a lot of 
effort because it would involve the development of a complete 
new servo control program for the WAM as well as modifications 
to ARCL and all GUI programs. Finally, the system did not 
provide any means for control tuning and data logging of the servo 
control program.  
The experience of this disassembly resulted in the formulation of 
the following requirements for a reusable software platform: 

• Flexibility. The platform should be easily extensible for new 
components, especially for new manipulators. Modifications 
and extensions of the platform should be possible on all levels 
of the system (i.e., task level, trajectory generation level, and 
servo control level). 

• Real-Time Support. The platform should provide support for 
real-time operations. In addition, the user should be able to 
debug the real-time code, log and plot control signals, and tune 
the controller. 

• Modularity. The platform should be structured into components 
that can be easily added and reconfigured. Also, researchers are 
often interested in just one special component of the platform 
(e.g., they are interested in improving the servo control 
algorithm). Hence, modularity allows the researcher to focus on 
his interest without learning the internals of the rest of the 
platform. 

2 Previous Systems and Research 
To implement a robotic system, developers often utilize: i) robot 
control languages, ii) common programming languages like 
C/C++, iii) graphical control environments, and iv) robotic 
libraries for common programming languages. 
Robot control languages provide a set of commands for 
implementing the control application. They are usually provided 
by the manipulator vendor and custom tailored to the specific 
manipulator type. Additionally, they are often based on 
proprietary hardware (i.e., special purpose processors). Many of 
these languages do not allow modification (e.g., implementing 
new control strategies) and extension (e.g., interfacing to new 
system components such as sensors, visual feedback, etc). Hence, 
the scope of proprietary robot control languages is limited. 
The most direct method for developing a software platform is to 
implement a new solution from scratch, in a common 
programming language such as C. The advantage of this approach 
is that one is able to design the system in a way that fits exactly 
his needs and requirements. However, there are many 
disadvantages to this approach. Specifically, due to the complexity 
of the problem, development is very time consuming, error-prone, 
and requires a high level of skill. 
To cut down on development time, solutions are available that 
simplify control development on the servo level. For example, 
QMotor [8][9] is a graphical control environment that requires the 
use of C/C++ to implement the control algorithm, but takes care of 
the programming issues related to timing, control tuning, data 



 

logging, and plotting. There are also several software platforms 
available that are based on MATLAB/Simulink, allowing the 
developer to create block diagrams instead of implementing the 
control as a C/C++ program. Real-Time Linux Target (RTLT) 
[10], Real-Time Windows Target [11], and WinCon [12] are 
examples of this concept. However, even though it is possible to 
implement a manipulator control system as a block diagram, the 
required functionality very often leads to complex block diagrams. 
In addition, the use of Simulink limits hardware related 
functionality and greatly increases the computational burden on 
the real-time platform (i.e., as opposed to developing a C/C++ 
program). 
Unfortunately, the development of a manipulator software 
platform, even when supported by the above-described 
environments, is an extensive task. That is why software libraries 
have been developed that provide data types and functions for 
robotic applications. The most well known example is RCCL [4]. 
The robot control library ARCL [6] is less complex and less 
powerful than RCCL, but follows the same concept. However, 
there is no straightforward way to modify the servo control level 
in RCCL and ARCL (e.g., for Puma 560 robots, the servo control 
runs on a proprietary Mark II controller); therefore; it is not 
straightforward to implement new control strategies. Also, the 
large amount of code and complexity of RCCL and ARCL make 
them very difficult to understand and modify. RCCL and ARCL 
are good examples of procedural programming reaching its limits. 
That is, both libraries use programming constructs (e.g., function 
pointers) that emulate object-oriented concepts. However, since 
the implementation language (C) is not object-oriented, these 
constructs are difficult to understand and modify. 
All of the solutions described above have one common problem. 
Specifically, if new functionality is needed or if new hardware is 
required, one must modify the source code (or the block diagrams, 
respectively). Modification of the systems internals is very error-
prone. To overcome this problem, there have been object-oriented 
approaches to robot control libraries. For example, RIPE [13], 
developed at Sandia National Laboratories, defines an intuitive 
hierarchy of classes for robotic hardware. However, RIPE does not 
use object-oriented concepts at the servo level. MMROC+ [14] 
uses an object-oriented design for error handling and 
simplification of the communication between processes. OSCAR 
[15] is an extensive library that addresses many issues of object-
oriented design for robotic systems. It focuses mainly on the 
operational software layer (the layer between the user interface 
and the servo control). However, it is also very complex and 
requires multiple computing platforms. 

3 The QMotor RTK System 
The QMotor RTK system is structured as a combination of ready-
to-execute programs and C++ libraries. The system is 
implemented on QNX 4 and QNX 6 (the QNX Real-Time 
Platform), which are very reliable real-time operating systems. To 
avoid addressing timing, data logging, and plotting, the real-time 
control environment QMotor [8][9] is used as the base for the 
RTK. QMotor allows object-oriented control implementation in 
which control programs can be implemented as C++ classes. The 
RTK takes advantage of this concept and builds on the QMotor 
classes. 
The QMotor RTK works only at the joint level, (i.e., 
forward/inverse kinematics and Cartesian trajectory generation are 
not included). The RTK contains joint level position control 
programs for the WAM, the Puma 560, and the IMI manipulator. 
Also included is a generic joint level trajectory generator and GUI 

based teachpendant. Additionally, various utility programs are part 
of the RTK. The object-oriented approach is used in the control 
development as well as for the GUI components. 
Figure 1 shows a typical QMotor RTK configuration. Each box 
represents a separate program. Lines represent message paths 
between the programs. The example system contains the 
teachpendant, the trajectory generator, the WAM servo control, 
and the WAM control panel. A ServoToGo S8 motion control 
board provides the hardware interface to the manipulator. To 
reconfigure the system, one only has to start different programs. 
For example, for the replacement of the WAM by a Puma 560 
robot, one would start the program “pumacontrol” instead of 
“wamcontrol”. 
 

 

Figure 1. A Typical QMotor RTK Configuration 

4 Data Logging, Plotting, and Control Tuning 
in an Object-Oriented Environment 

As the system design discussed in this paper starts by 
implementing the servo control loop, one needs to implement a 
cycling control loop. Furthermore, it is desired to offer 
functionality with regard to tuning the control algorithm and 
gathering data during the control run. These tasks are not trivial to 
implement. They also add large overhead to the programming 
effort. Thus, it is helpful to reuse existing software to save 
development time. The QMotor environment is well-suited for all 
real-time components of the RTK. QMotor is a general real-time 
environment for the development of any kind of control program. 
It contains three components: Hardware servers, the control 
program library and the QMotor GUI. 
The Hardware Servers provide a generic interface to motion 
control boards and other hardware components. Currently, the 
QMotor RTK utilizes hardware servers for the MultiQ and the 
ServoToGo S8 motion control boards. 
The Control Program Library is utilized to implement the control 
algorithm as a C/C++ program. A base class, called 
ControlProgram, contains the framework for implementing 
control programs. The user derives a class that is specific to the 
control application from the ControlProgram class (e.g., 
ManipulatorControl) and fills in the necessary functionality to 
implement the control algorithm. This functionality is contained in 
five functions that are left blank in the base class 
ControlProgram: 

- enterControl(): Called when the control program is loaded 

- startControl(): Called every time the control execution is 
started 

- control(): Called regularly at the control frequency 

- stopControl(): Called when the control execution is stopped 



 

- exitControl(): Called when the control program terminates 

- handleMessage(): This function allows the control program 
to perform as a server, since handleMessage() is called when 
a message from another task (i.e., the client task) arrives.  

The QMotor GUI is used for selecting logging options, for 
plotting signals, and for control tuning. C++ variables of the 
control program can be registered as control parameters to give the 
user the ability to change them from the GUI environment. In the 
same fashion, other C++ variables can be registered as log 
variables, thereby, making them available to be logged and plotted 
in the GUI.  Figure 2 shows a QMotor plot window. 
 

 

Figure 2. A QMotor Plot Window 

5 Object-Oriented Design 
The procedural programming approach is based on two major 
concepts: 
1. Data representation (e.g., representation of the current position 

error of a manipulator). 
2. Functions that operate on this data (e.g., a function that 

calculates the required torques from the position error). 
The above two concepts exist in the object-oriented approach as 
well. However, while procedural programming treats them 
separately, the object-oriented design ties them together. That is, 
they are grouped together in a construct called a class. There can 
be any number of classes in the system, identified by class names. 
For example, a PumaControl class would contain all of the data 
related to the control of a Puma robot (e.g., current position, 
desired position, output torques, etc.) and all functions that are 
related to the control (e.g., calculate the control algorithm, enable 
the arm power, etc.). To design an object-oriented system, the 
software engineer must carefully group data and functions in 
classes. Considering a software platform for robotic applications, 
this choice is intuitive. For example, classes represent physical 
objects such as the manipulator. Additionally, there are classes 
that represent functional objects (e.g., the trajectory generator) and 
classes for GUI components. Consequently, the use of classes 
leads to a very intuitive modeling of the system. 
There are several useful programming techniques utilized in 
object-oriented programming: i) data abstraction, ii) 
encapsulation, iii) polymorphism, and iv) inheritance [16]. Among 
other benefits, these programming styles have the following 
advantages: 

• To use a class, an object of the class has to be instantiated. To 
operate multiple physical objects (e.g., to control two 
manipulators of the same kind), the programmer simply 
instantiates multiple objects of the same class. 

• Polymorphism is the ability to provide the same interface to 
objects with differing implementations. Polymorphism is 
useful for developing generic programs (e.g., a trajectory 
generator can use the same generic interface for different 
manipulators). 

• The use of classes leads to an open system that allows 
extension of the system via the design of new classes. 
Specifically, inheritance can be utilized. That is, any class can 
be defined to reuse generic data and functions from another 
class. 

The idea of inheritance with regard to manipulator control 
software is now examined in detail. Once one starts to design 
classes for a manipulator control system, similarities between 
these classes become apparent. A class for a Puma 560 robot and a 
class for the WAM contain common functionality (e.g., they both 
utilize a servo control algorithm, receive a desired trajectory, 
determine the current position by encoders, etc.). 
A simple approach to develop both classes would be to first 
develop the class for the Puma 560 robot and then either rewrite 
the code for the WAM or copy the Puma 560 code and modify it 
(see Figure 3a). However, this approach leads to additional 
development effort; and hence; a higher probability of new errors. 
In addition, if the common functionality changes (e.g., due to bug 
fixes or improvements), then changes need to be applied to all of 
the copies. 
To avoid these disadvantages, the inheritance feature of object-
oriented programming can be utilized. To use inheritance, a base 
class ManipulatorControl is defined. This base class contains 
the common functionality as described above. Then, the specific 
classes for the Puma 560 and the WAM manipulator are derived 
from this base class (see Figure 3b). Deriving means that they take 
over the functionality and data from the base class. Additionally, 
they are also able to redefine parts of this functionality and/or add 
new functionality and data. Once the base classes have been 
developed, they do not need to be re-compiled when a new 
derived class is added. That is, one does not need to change any 
source code of the base class to extend the system. On the other 
hand, a modification of the common functionality in the base class 
is automatically reflected in all derived classes. Hence, inheritance 
greatly supports code reuse. 
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Figure 3. Code Reuse through a) Code Duplication, and b) 
Object-Oriented Programming 

6 Design of the Manipulator Control Classes 

6.1 The Base Class 
The lowest level of the QMotor RTK is the servo control level. 
This level consists of an independent PD joint tracking controller 
and the interface between the computer and the robot via a motion 
control board. The servo control level is implemented for three 
different manipulators: The Puma 560 robot, the WAM, and the 
IMI robot. As mentioned earlier, the first step in object-oriented 
design is to distinguish between common functionality/data and 



 

specific functionality/data. This concept is illustrated for the servo 
control level in Table 1 and Table 2. 
 

Table 1. Common and Specific Functionality for the 
Manipulator Control 

Common Data Specific Puma Data 

• Potentiometer values 

Specific WAM Data 

• Torque ripple data 

Specific IMI Data 

• Joint position, velocity, 
acceleration for n joints 

• Control gains 
• Control modes 
• Joint and torque limits 
• Variables for I/O board control 
• Other control parameters --- 

Table 2. Common and Specific Data for the Manipulator 
Control 

Common Functionality Specific Puma Functionality 

• Automatic encoder 
calibration 

• Motor angles to joint angles 
transformation (to include 
coupling effects) 

• Gravity compensation 

Specific WAM Functionality 

• Automatic encoder 
calibration 

• Motor angles to joint angles 
transformation (to include 
coupling effects) 

• Joint torques to motor 
torques transformation 

• Gravity compensation 
• Torque ripple compensation 

Specific IMI Functionality 

• Communication with the 
motion control board 

• Setting output torques by 
setting voltages of the digital 
to analog converters (DACs)  

• Position readings through 
encoders 

• Enabling/disabling arm 
power by setting digital 
outputs 

• PD position control 
• Determining velocities and 

accelerations by backwards 
difference and filtering 

• Communication with client 
tasks (e.g., to receive a 
desired trajectory) 

• Switching between control 
modes (e.g., zero gravity 
mode/position control mode) 

• Safety checks for joint and 
torque limits 

• Manual calibration 
• Generation of a simple test 

mode trajectory 

• Disable arm power 
functions (There is no 
software control over the 
arm power) 

 
All common functionality (Table 1, left column) and data (Table 
2, left column) is contained in the base class 
ManipulatorControl. This class, which is derived from the 
ControlProgram class, implements all the QMotor functions of 
the ControlProgram class that were left empty (i.e., 
enterControl(), exitControl(), startControl(), 
stopControl(), control(), and handleMessage()). All  
functions that should be available for reimplementation in a 
derived class are declared as virtual functions. That is, even if such 
a function is called from the base class, the reimplemented 
function will be used. 

Some functions of the base class ManipulatorControl contain 
common functionality, while others are just left empty (e.g., the 
doCalibration() function is responsible for the automatic 
calibration procedure, and hence, is highly manipulator 

dependent). In the derived classes for the Puma 560 robot, the 
WAM and the IMI robot, new functions are added and certain 
functions are reimplemented with modified functionality, as listed 
in Table 1 and Table 2. Since the major part of the work is done in 
the base class ManipulatorControl, the derived classes are 
significantly smaller and simpler. 

6.2 The PumaControl Class 
The following extensions are made in the PumaControl class: 

• Variables and functions for the automatic encoder calibration 
procedure are added. This procedure determines the absolute 
position of the Puma by first getting a rough estimate from 
potentiometer readings and then performing the calibration by 
searching for the next index pulse. 

• The function getCurrentPosition() is reimplemented to 
take the coupling of joints 4, 5 and 6 into account. 

• Gravity compensation is added. Gravity compensation 
calculates the torques resulting from the manipulator’s weight 
and adds these to the output torque for compensation [17]. 

6.3 The WAMControl Class 
The following extensions are made in the WAMControl class: 

• Variables and functions for the automatic encoder calibration 
procedure are added. 

• The functions getCurrentPosition() and 
setControlTorque() are reimplemented to take the 
coupling of joints 2/3 and joints 5/6 into account. 

• Gravity compensation is added. 

• Torque ripple compensation is added. 
The automatic calibration procedure of the RTK determines the 
absolute position of the WAM by moving joint by joint to its joint 
limits. The joint limit is detected by the position error exceeding a 
certain threshold. Then, a weighted sum of the encoder values at 
the minimum and the maximum joint limit determines the zero 
position of the WAM. This procedure is a somewhat lengthy 
operation; however; it is necessary because the WAM does not 
contain hardware to determine its absolute position (e.g., 
potentiometers). 
For the gravity compensation, the WAM is modeled as three point 
masses. Two of these point masses are located at the center of 
mass of each link, and the third is located at the end of the robot 
arm. Lagrange’s equation of the manipulator is simplified by the 
static conditions of the manipulator holding the position (i.e., the 
joint velocities and the kinetic energy are zero). This simplified 
equation can be used to calculate the required torques [7]. To 
determine the mass parameters of the equation, a calibration 
procedure is implemented as a separate program. This program, 
called "gravity calibration utility", moves the WAM with the 
position control (without gravity compensation) to three 
predefined positions and measures the average torque to hold the 
WAM at this position. From those torque values, the mass 
parameters can be calculated. 
Finally, a small signal is added to the motor control voltage to 
compensate for the torque ripple of the electric motors to provide 
smoother movement in the zero gravity mode. 

6.4 The IMIControl Class 
The only modification in the IMIControl class concerns the arm 
power functions. As the IMI does not have arm power control by 
software, the arm power functionality is removed in the derived 
class IMIControl. 



 

7 The GUI Components 
The design of GUI components is very important with regard to 
simplifying the use of the manipulator control system. Real-time 
operating system like QNX 4 and QNX 6 allow GUI programs to 
coexist with high priority control programs. The RTK contains 
four GUI programs: the manipulator control panel, the WAM 
control panel, the manual-move utility, and the teachpendant. 
QWidgets++ [8] is an object-oriented library for GUI 
programming under QNX. QWidgets++ was selected for the GUI 
programs of the RTK because it facilitates a pure object-oriented 
design. Specifically, GUI elements (e.g., buttons, windows, etc.), 
also called widgets, are represented by C++ classes. The 
manipulator control panels demonstrate the use of inheritance at 
the GUI level. The manipulator control panel (see Figure 4) is a 
generic control panel that works with all manipulators. The WAM 
control panel has two additional buttons to control torque ripple 
compensation and manual calibration (Figure 5). To avoid 
duplicating the common features of both control panels, a base 
class ManipulatorControlPanel is created that implements the 
common features of both control panels. The class 
WAMControlPanel is then derived from the class 
ManipulatorControlPanel to add the additional buttons to the 
control panel window. 
 

 

Figure 4. The Generic Manipulator Control Panel 

 
Figure 5. The WAM Control Panel 

The teachpendant (see Figure 6) uses the zero gravity mode of the 
manipulator to allow the user to push the manipulator around in 
the workspace. Once the user has moved the manipulator to a 
desired target position, this position can be added to a list of 
points. The teachpendant also utilizes the trajectory generator to 
move the manipulator back to the taught positions. Additionally, 
the teachpendant is able to control the Barrett Hand, an advanced 
three finger gripper. Hence, complete pick and place operations 
can be programmed with the teachpendant. 
 

 

Figure 6. The Teachpendant 

8 Modifying the System Using Inheritance 
The previous sections explained how object-oriented techniques 
accelerate the addition of new components to the QMotor RTK. 
This section illustrates in greater detail how inheritance can be 
used during the addition of a new control algorithm. Specifically, 
in this simple example, the controller is extended from the PD 
controller to a PID controller. 

Figure 7 shows the function calculatePositionControl(), 
which calculates the PD control. This function is part of the class 
ManipulatorControl. To implement the new controller, a new 
class WAMPIDControl is derived from the class WAMControl (see 
Figure 8, [a]). This class reimplements the function 
calculatePositionControl(). The reimplemented function 
first calls the calculatePositionControl() function of the 
base class; and hence, uses the algorithm for the PD control of the 
base class (see Figure 8, [b]). Then, the integral term is added (see 
Figure 8, [c]). Note that the function 
calculatePositionControl() of the base class and the 
derived class are distinguished by the scope prefixes 
“ManipulatorControl::” and “WAMPIDControl::”. 
 
 

void ManipulatorControl::calculatePositionControl() 
{ 
  // PD control plus acceleration feedforward 
  for (int i = 0; i < d_numJoints; i++) 
  { 
    d_controlTorque[i] += d_kp[i] * d_positionErrorRad[i] 
    + d_kd[i] * (d_desiredVelocityRad[i] - d_velocityRad[i]) 
    + d_feedforwardAccelerationGain[i] *  
         d_desiredAccelerationRad[i]; 
  } 
} 
 

Figure 7. The PD Control Calculation in the Base Class 

 

// ===== Class declaration of the derived class WAMPIDControl 
 
class WAMPIDControl : public WAMControl                  [a] 
{ 
 // ----- Constructors ----- 
public: 
 WAMPIDControl (int argc, char *argv[]) 
     : WAMControl(argc, argv) {} 
 ~WAMPIDControl () {}; 
  
 // ----- Manipulators ----- 
 virtual void calculatePositionControl(); 
   
 double d_ki[7];                   // Integral Gain 
 double d_prevPositionErrorRad[7]; // Position error of the
                                   // previous control cycle 
 double d_positionErrorInt[7]; // Integrated position error 
};                                         
 
 
// ===== Reimplemented function calculatePositionControl() 
 
void WAMPIDControl::calculatePositionControl() 
{ 
  // Call the base class to do the PD control 
 ManipulatorControl::calculatePositionControl();       [b] 
  
 // Then add the integral term 
 for (int i = 0; i < d_numJoints; i++)                 [c] 
 { 
     // Integrate the position error 
  d_positionErrorInt[i] += 0.5 * d_controlPeriod 
   * (d_positionErrorRad[i] + d_prevPositionErrorRad[i]); 
  d_prevPositionErrorRad[i] = d_positionErrorRad[i]; 
 
     // Add the integral term to the control torque 
  d_controlTorque[i] += d_ki[i] * d_positionErrorInt[i]; 
 } 
} 
 

Figure 8. The Derived Class WAMPIDControl 



 

9 Conclusions 
This paper presented an object-oriented design for a software 
platform for robotic applications. Because of the complexity of 
large-scale software environments, the QMotor RTK was designed 
to be a lightweight modular platform. The RTK is a homogeneous, 
object-oriented system that is purely implemented as PC software. 
It utilizes a bottom-up design that is open and extensible from the 
servo-level to the task level. 
The QMotor RTK reuses code for implementing different 
manipulator control programs and GUI programs. Specifically, 
base classes and classes for the Puma 560 robot, the WAM, and 
the IMI robot have been developed. Figure 9 relates the code size 
of the common and specific RTK components to the total code 
size. It illustrates that the implementation of new manipulators 
require a significantly smaller coding effort once the common base 
class is implemented. Note that a smaller coding effort also means 
a smaller source of coding errors. All new manipulator classes can 
refer to the well-tested base classes. The WAM control class, for 
example, had been developed without the manipulator present. 
Large parts of the RTK had already been tested with the Puma 560 
robot. After the WAM arrived in the laboratories of Clemson 
University, the control program for the WAM was debugged and 
tuned within three days. The IMI control program was 
implemented, debugged, and tuned in a single day. 
 

 

Figure 9. Code Size Ratios for the Supported Manipulators 

We have also illustrated how object-oriented principles can be 
utilized to extend the system for new control algorithms shown 
with the example of a PID control. This example demonstrates one 
of the primary advantages of the RTK design: Coding effort of 
extensions is significantly smaller compared to implementation 
from scratch. Additionally, there is no need to modify source code 
when extensions are needed. 
Future research is directed towards a new design that allows 
further simplification and a larger functionality while still 
maintaining a lightweight design. A more complete class hierarchy 
including sensors and tools is desired as well as classes for 
Cartesian control. Finally, a three-dimensional graphical 
simulation of the system’s components would improve the 
system’s testing capabilities significantly by adding off-line 
programming and testing. 
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