
Object-Oriented Techniques in Robot Manipulator Control Software Development

Markus S. Loffler, Darren M. Dawson, Erkan Zergeroglu and Nicolae P. Costescu

Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634-0915
[loffler, ddawson, ezerger, ncostes]@ces.clemson.edu

Abstract
Software development for the control of robotic manipulators is a
complex task because it requires expertise in many areas (e.g.,
robotics, real-time programming, hardware integration, concurrency,
etc). Because of this fact, it is difficult to develop a common software
platform supporting the diversity of robotic research areas and
robotic hardware. Even though a large number of robotic languages,
libraries, and tools have been created, they are seldom reused. That
is, many research teams develop their own software platform from
scratch because existing platforms are too inflexible with regard to
modifications and too complex to understand. The authors of this
paper believe that code reuse is fostered by providing a lightweight
platform rather than requiring the user to modify a complex system.
Along this line of reasoning, this paper describes the QMotor Robotic
Toolkit (QMotor RTK). The RTK is a set of C++ libraries and
programs that follow object-oriented concepts to ensure code reuse,
modularity, scalability, and an intuitive code structure. The RTK is a
homogeneous system that consists only of PC software. The RTK
includes joint level control programs for the Puma 560 manipulator,
the Barrett Whole Arm Manipulator (WAM), and the Integrated
Motion Inc. (IMI) two-link manipulator as well as a joint level
trajectory generator and a graphical user interface (GUI).

1 Introduction
Software development for the control of robotic manipulators is a
complex task. That is, even for simple pick and place operations,
the software developer needs to incorporate hardware interfacing,
concurrency, real-time programming, servo control programming,
and trajectory generation into the software platform. In more
advanced applications, manipulators operate based on sensor and
visual feedback (e.g., to implement visual servoing and force
based control). Finally, many modern systems provide advanced
operator consoles based on visual feedback, virtual reality, and a
graphical user interface. To minimize the development effort, it is
desired to build on an existing software platform. However, the
diversity of robotic research areas, applications, and robotic
hardware has not fostered the development of a commonly used
platform.
The necessity for such a platform can be understood by looking at
our previous work regarding the utilization of robotic
manipulators for decommissioning tasks [1][2][3]. Our
disassembly system first utilized the robot control library RCCL
[4] and a Puma 560 robot. This structure was not flexible enough
to implement more complex controller types, as required in
disassembly operations, because the servo level was implemented
on a proprietary Mark II controller. To increase flexibility, we
developed a servo control program executing on the QNX 4 real-
time operating system [5] along with an interface to the robot
control library RCCL. Subsequently, due to the limitations of this
system, we started over again and ported ARCL [6] to QNX 4.
Although at all stages of the project, the result was a working
platform [2][3], each platform had several disadvantages. First, a
lot of development time had to be spent in areas that were not
really part of the research issue: Porting libraries, writing
interfaces between different software packages, studying of code
written by others, etc. Second, the system was very proprietary to

the application and the hardware environment. For example, later
in this project we wanted to integrate the WAM [7] into our
disassembly system. This modification would require a lot of
effort because it would involve the development of a complete
new servo control program for the WAM as well as modifications
to ARCL and all GUI programs. Finally, the system did not
provide any means for control tuning and data logging of the servo
control program.
The experience of this disassembly resulted in the formulation of
the following requirements for a reusable software platform:

• Flexibility. The platform should be easily extensible for new
components, especially for new manipulators. Modifications
and extensions of the platform should be possible on all levels
of the system (i.e., task level, trajectory generation level, and
servo control level).

• Real-Time Support. The platform should provide support for
real-time operations. In addition, the user should be able to
debug the real-time code, log and plot control signals, and tune
the controller.

• Modularity. The platform should be structured into components
that can be easily added and reconfigured. Also, researchers are
often interested in just one special component of the platform
(e.g., they are interested in improving the servo control
algorithm). Hence, modularity allows the researcher to focus on
his interest without learning the internals of the rest of the
platform.

2 Previous Systems and Research
To implement a robotic system, developers often utilize: i) robot
control languages, ii) common programming languages like
C/C++, iii) graphical control environments, and iv) robotic
libraries for common programming languages.
Robot control languages provide a set of commands for
implementing the control application. They are usually provided
by the manipulator vendor and custom tailored to the specific
manipulator type. Additionally, they are often based on
proprietary hardware (i.e., special purpose processors). Many of
these languages do not allow modification (e.g., implementing
new control strategies) and extension (e.g., interfacing to new
system components such as sensors, visual feedback, etc). Hence,
the scope of proprietary robot control languages is limited.
The most direct method for developing a software platform is to
implement a new solution from scratch, in a common
programming language such as C. The advantage of this approach
is that one is able to design the system in a way that fits exactly
his needs and requirements. However, there are many
disadvantages to this approach. Specifically, due to the complexity
of the problem, development is very time consuming, error-prone,
and requires a high level of skill.
To cut down on development time, solutions are available that
simplify control development on the servo level. For example,
QMotor [8][9] is a graphical control environment that requires the
use of C/C++ to implement the control algorithm, but takes care of
the programming issues related to timing, control tuning, data

logging, and plotting. There are also several software platforms
available that are based on MATLAB/Simulink, allowing the
developer to create block diagrams instead of implementing the
control as a C/C++ program. Real-Time Linux Target (RTLT)
[10], Real-Time Windows Target [11], and WinCon [12] are
examples of this concept. However, even though it is possible to
implement a manipulator control system as a block diagram, the
required functionality very often leads to complex block diagrams.
In addition, the use of Simulink limits hardware related
functionality and greatly increases the computational burden on
the real-time platform (i.e., as opposed to developing a C/C++
program).
Unfortunately, the development of a manipulator software
platform, even when supported by the above-described
environments, is an extensive task. That is why software libraries
have been developed that provide data types and functions for
robotic applications. The most well known example is RCCL [4].
The robot control library ARCL [6] is less complex and less
powerful than RCCL, but follows the same concept. However,
there is no straightforward way to modify the servo control level
in RCCL and ARCL (e.g., for Puma 560 robots, the servo control
runs on a proprietary Mark II controller); therefore; it is not
straightforward to implement new control strategies. Also, the
large amount of code and complexity of RCCL and ARCL make
them very difficult to understand and modify. RCCL and ARCL
are good examples of procedural programming reaching its limits.
That is, both libraries use programming constructs (e.g., function
pointers) that emulate object-oriented concepts. However, since
the implementation language (C) is not object-oriented, these
constructs are difficult to understand and modify.
All of the solutions described above have one common problem.
Specifically, if new functionality is needed or if new hardware is
required, one must modify the source code (or the block diagrams,
respectively). Modification of the systems internals is very error-
prone. To overcome this problem, there have been object-oriented
approaches to robot control libraries. For example, RIPE [13],
developed at Sandia National Laboratories, defines an intuitive
hierarchy of classes for robotic hardware. However, RIPE does not
use object-oriented concepts at the servo level. MMROC+ [14]
uses an object-oriented design for error handling and
simplification of the communication between processes. OSCAR
[15] is an extensive library that addresses many issues of object-
oriented design for robotic systems. It focuses mainly on the
operational software layer (the layer between the user interface
and the servo control). However, it is also very complex and
requires multiple computing platforms.

3 The QMotor RTK System
The QMotor RTK system is structured as a combination of ready-
to-execute programs and C++ libraries. The system is
implemented on QNX 4 and QNX 6 (the QNX Real-Time
Platform), which are very reliable real-time operating systems. To
avoid addressing timing, data logging, and plotting, the real-time
control environment QMotor [8][9] is used as the base for the
RTK. QMotor allows object-oriented control implementation in
which control programs can be implemented as C++ classes. The
RTK takes advantage of this concept and builds on the QMotor
classes.
The QMotor RTK works only at the joint level, (i.e.,
forward/inverse kinematics and Cartesian trajectory generation are
not included). The RTK contains joint level position control
programs for the WAM, the Puma 560, and the IMI manipulator.
Also included is a generic joint level trajectory generator and GUI

based teachpendant. Additionally, various utility programs are part
of the RTK. The object-oriented approach is used in the control
development as well as for the GUI components.
Figure 1 shows a typical QMotor RTK configuration. Each box
represents a separate program. Lines represent message paths
between the programs. The example system contains the
teachpendant, the trajectory generator, the WAM servo control,
and the WAM control panel. A ServoToGo S8 motion control
board provides the hardware interface to the manipulator. To
reconfigure the system, one only has to start different programs.
For example, for the replacement of the WAM by a Puma 560
robot, one would start the program “pumacontrol” instead of
“wamcontrol”.

Figure 1. A Typical QMotor RTK Configuration

4 Data Logging, Plotting, and Control Tuning
in an Object-Oriented Environment

As the system design discussed in this paper starts by
implementing the servo control loop, one needs to implement a
cycling control loop. Furthermore, it is desired to offer
functionality with regard to tuning the control algorithm and
gathering data during the control run. These tasks are not trivial to
implement. They also add large overhead to the programming
effort. Thus, it is helpful to reuse existing software to save
development time. The QMotor environment is well-suited for all
real-time components of the RTK. QMotor is a general real-time
environment for the development of any kind of control program.
It contains three components: Hardware servers, the control
program library and the QMotor GUI.
The Hardware Servers provide a generic interface to motion
control boards and other hardware components. Currently, the
QMotor RTK utilizes hardware servers for the MultiQ and the
ServoToGo S8 motion control boards.
The Control Program Library is utilized to implement the control
algorithm as a C/C++ program. A base class, called
ControlProgram, contains the framework for implementing
control programs. The user derives a class that is specific to the
control application from the ControlProgram class (e.g.,
ManipulatorControl) and fills in the necessary functionality to
implement the control algorithm. This functionality is contained in
five functions that are left blank in the base class
ControlProgram:

- enterControl(): Called when the control program is loaded

- startControl(): Called every time the control execution is
started

- control(): Called regularly at the control frequency

- stopControl(): Called when the control execution is stopped

- exitControl(): Called when the control program terminates

- handleMessage(): This function allows the control program
to perform as a server, since handleMessage() is called when
a message from another task (i.e., the client task) arrives.

The QMotor GUI is used for selecting logging options, for
plotting signals, and for control tuning. C++ variables of the
control program can be registered as control parameters to give the
user the ability to change them from the GUI environment. In the
same fashion, other C++ variables can be registered as log
variables, thereby, making them available to be logged and plotted
in the GUI. Figure 2 shows a QMotor plot window.

Figure 2. A QMotor Plot Window

5 Object-Oriented Design
The procedural programming approach is based on two major
concepts:
1. Data representation (e.g., representation of the current position

error of a manipulator).
2. Functions that operate on this data (e.g., a function that

calculates the required torques from the position error).
The above two concepts exist in the object-oriented approach as
well. However, while procedural programming treats them
separately, the object-oriented design ties them together. That is,
they are grouped together in a construct called a class. There can
be any number of classes in the system, identified by class names.
For example, a PumaControl class would contain all of the data
related to the control of a Puma robot (e.g., current position,
desired position, output torques, etc.) and all functions that are
related to the control (e.g., calculate the control algorithm, enable
the arm power, etc.). To design an object-oriented system, the
software engineer must carefully group data and functions in
classes. Considering a software platform for robotic applications,
this choice is intuitive. For example, classes represent physical
objects such as the manipulator. Additionally, there are classes
that represent functional objects (e.g., the trajectory generator) and
classes for GUI components. Consequently, the use of classes
leads to a very intuitive modeling of the system.
There are several useful programming techniques utilized in
object-oriented programming: i) data abstraction, ii)
encapsulation, iii) polymorphism, and iv) inheritance [16]. Among
other benefits, these programming styles have the following
advantages:

• To use a class, an object of the class has to be instantiated. To
operate multiple physical objects (e.g., to control two
manipulators of the same kind), the programmer simply
instantiates multiple objects of the same class.

• Polymorphism is the ability to provide the same interface to
objects with differing implementations. Polymorphism is
useful for developing generic programs (e.g., a trajectory
generator can use the same generic interface for different
manipulators).

• The use of classes leads to an open system that allows
extension of the system via the design of new classes.
Specifically, inheritance can be utilized. That is, any class can
be defined to reuse generic data and functions from another
class.

The idea of inheritance with regard to manipulator control
software is now examined in detail. Once one starts to design
classes for a manipulator control system, similarities between
these classes become apparent. A class for a Puma 560 robot and a
class for the WAM contain common functionality (e.g., they both
utilize a servo control algorithm, receive a desired trajectory,
determine the current position by encoders, etc.).
A simple approach to develop both classes would be to first
develop the class for the Puma 560 robot and then either rewrite
the code for the WAM or copy the Puma 560 code and modify it
(see Figure 3a). However, this approach leads to additional
development effort; and hence; a higher probability of new errors.
In addition, if the common functionality changes (e.g., due to bug
fixes or improvements), then changes need to be applied to all of
the copies.
To avoid these disadvantages, the inheritance feature of object-
oriented programming can be utilized. To use inheritance, a base
class ManipulatorControl is defined. This base class contains
the common functionality as described above. Then, the specific
classes for the Puma 560 and the WAM manipulator are derived
from this base class (see Figure 3b). Deriving means that they take
over the functionality and data from the base class. Additionally,
they are also able to redefine parts of this functionality and/or add
new functionality and data. Once the base classes have been
developed, they do not need to be re-compiled when a new
derived class is added. That is, one does not need to change any
source code of the base class to extend the system. On the other
hand, a modification of the common functionality in the base class
is automatically reflected in all derived classes. Hence, inheritance
greatly supports code reuse.

PumaControl WAMControl

Common
Functionality

Common
Functionality

Copy
and

Modify

a) b) ManipulatorControl

Common
Functionality

PumaControl

Common
Functionality

WAMControl

Common
Functionality

Base
Class

Derived
Classes

Figure 3. Code Reuse through a) Code Duplication, and b)
Object-Oriented Programming

6 Design of the Manipulator Control Classes

6.1 The Base Class
The lowest level of the QMotor RTK is the servo control level.
This level consists of an independent PD joint tracking controller
and the interface between the computer and the robot via a motion
control board. The servo control level is implemented for three
different manipulators: The Puma 560 robot, the WAM, and the
IMI robot. As mentioned earlier, the first step in object-oriented
design is to distinguish between common functionality/data and

specific functionality/data. This concept is illustrated for the servo
control level in Table 1 and Table 2.

Table 1. Common and Specific Functionality for the
Manipulator Control

Common Data Specific Puma Data

• Potentiometer values

Specific WAM Data

• Torque ripple data

Specific IMI Data

• Joint position, velocity,
acceleration for n joints

• Control gains
• Control modes
• Joint and torque limits
• Variables for I/O board control
• Other control parameters ---

Table 2. Common and Specific Data for the Manipulator
Control

Common Functionality Specific Puma Functionality

• Automatic encoder
calibration

• Motor angles to joint angles
transformation (to include
coupling effects)

• Gravity compensation

Specific WAM Functionality

• Automatic encoder
calibration

• Motor angles to joint angles
transformation (to include
coupling effects)

• Joint torques to motor
torques transformation

• Gravity compensation
• Torque ripple compensation

Specific IMI Functionality

• Communication with the
motion control board

• Setting output torques by
setting voltages of the digital
to analog converters (DACs)

• Position readings through
encoders

• Enabling/disabling arm
power by setting digital
outputs

• PD position control
• Determining velocities and

accelerations by backwards
difference and filtering

• Communication with client
tasks (e.g., to receive a
desired trajectory)

• Switching between control
modes (e.g., zero gravity
mode/position control mode)

• Safety checks for joint and
torque limits

• Manual calibration
• Generation of a simple test

mode trajectory

• Disable arm power
functions (There is no
software control over the
arm power)

All common functionality (Table 1, left column) and data (Table
2, left column) is contained in the base class
ManipulatorControl. This class, which is derived from the
ControlProgram class, implements all the QMotor functions of
the ControlProgram class that were left empty (i.e.,
enterControl(), exitControl(), startControl(),
stopControl(), control(), and handleMessage()). All
functions that should be available for reimplementation in a
derived class are declared as virtual functions. That is, even if such
a function is called from the base class, the reimplemented
function will be used.

Some functions of the base class ManipulatorControl contain
common functionality, while others are just left empty (e.g., the
doCalibration() function is responsible for the automatic
calibration procedure, and hence, is highly manipulator

dependent). In the derived classes for the Puma 560 robot, the
WAM and the IMI robot, new functions are added and certain
functions are reimplemented with modified functionality, as listed
in Table 1 and Table 2. Since the major part of the work is done in
the base class ManipulatorControl, the derived classes are
significantly smaller and simpler.

6.2 The PumaControl Class
The following extensions are made in the PumaControl class:

• Variables and functions for the automatic encoder calibration
procedure are added. This procedure determines the absolute
position of the Puma by first getting a rough estimate from
potentiometer readings and then performing the calibration by
searching for the next index pulse.

• The function getCurrentPosition() is reimplemented to
take the coupling of joints 4, 5 and 6 into account.

• Gravity compensation is added. Gravity compensation
calculates the torques resulting from the manipulator’s weight
and adds these to the output torque for compensation [17].

6.3 The WAMControl Class
The following extensions are made in the WAMControl class:

• Variables and functions for the automatic encoder calibration
procedure are added.

• The functions getCurrentPosition() and
setControlTorque() are reimplemented to take the
coupling of joints 2/3 and joints 5/6 into account.

• Gravity compensation is added.

• Torque ripple compensation is added.
The automatic calibration procedure of the RTK determines the
absolute position of the WAM by moving joint by joint to its joint
limits. The joint limit is detected by the position error exceeding a
certain threshold. Then, a weighted sum of the encoder values at
the minimum and the maximum joint limit determines the zero
position of the WAM. This procedure is a somewhat lengthy
operation; however; it is necessary because the WAM does not
contain hardware to determine its absolute position (e.g.,
potentiometers).
For the gravity compensation, the WAM is modeled as three point
masses. Two of these point masses are located at the center of
mass of each link, and the third is located at the end of the robot
arm. Lagrange’s equation of the manipulator is simplified by the
static conditions of the manipulator holding the position (i.e., the
joint velocities and the kinetic energy are zero). This simplified
equation can be used to calculate the required torques [7]. To
determine the mass parameters of the equation, a calibration
procedure is implemented as a separate program. This program,
called "gravity calibration utility", moves the WAM with the
position control (without gravity compensation) to three
predefined positions and measures the average torque to hold the
WAM at this position. From those torque values, the mass
parameters can be calculated.
Finally, a small signal is added to the motor control voltage to
compensate for the torque ripple of the electric motors to provide
smoother movement in the zero gravity mode.

6.4 The IMIControl Class
The only modification in the IMIControl class concerns the arm
power functions. As the IMI does not have arm power control by
software, the arm power functionality is removed in the derived
class IMIControl.

7 The GUI Components
The design of GUI components is very important with regard to
simplifying the use of the manipulator control system. Real-time
operating system like QNX 4 and QNX 6 allow GUI programs to
coexist with high priority control programs. The RTK contains
four GUI programs: the manipulator control panel, the WAM
control panel, the manual-move utility, and the teachpendant.
QWidgets++ [8] is an object-oriented library for GUI
programming under QNX. QWidgets++ was selected for the GUI
programs of the RTK because it facilitates a pure object-oriented
design. Specifically, GUI elements (e.g., buttons, windows, etc.),
also called widgets, are represented by C++ classes. The
manipulator control panels demonstrate the use of inheritance at
the GUI level. The manipulator control panel (see Figure 4) is a
generic control panel that works with all manipulators. The WAM
control panel has two additional buttons to control torque ripple
compensation and manual calibration (Figure 5). To avoid
duplicating the common features of both control panels, a base
class ManipulatorControlPanel is created that implements the
common features of both control panels. The class
WAMControlPanel is then derived from the class
ManipulatorControlPanel to add the additional buttons to the
control panel window.

Figure 4. The Generic Manipulator Control Panel

Figure 5. The WAM Control Panel

The teachpendant (see Figure 6) uses the zero gravity mode of the
manipulator to allow the user to push the manipulator around in
the workspace. Once the user has moved the manipulator to a
desired target position, this position can be added to a list of
points. The teachpendant also utilizes the trajectory generator to
move the manipulator back to the taught positions. Additionally,
the teachpendant is able to control the Barrett Hand, an advanced
three finger gripper. Hence, complete pick and place operations
can be programmed with the teachpendant.

Figure 6. The Teachpendant

8 Modifying the System Using Inheritance
The previous sections explained how object-oriented techniques
accelerate the addition of new components to the QMotor RTK.
This section illustrates in greater detail how inheritance can be
used during the addition of a new control algorithm. Specifically,
in this simple example, the controller is extended from the PD
controller to a PID controller.

Figure 7 shows the function calculatePositionControl(),
which calculates the PD control. This function is part of the class
ManipulatorControl. To implement the new controller, a new
class WAMPIDControl is derived from the class WAMControl (see
Figure 8, [a]). This class reimplements the function
calculatePositionControl(). The reimplemented function
first calls the calculatePositionControl() function of the
base class; and hence, uses the algorithm for the PD control of the
base class (see Figure 8, [b]). Then, the integral term is added (see
Figure 8, [c]). Note that the function
calculatePositionControl() of the base class and the
derived class are distinguished by the scope prefixes
“ManipulatorControl::” and “WAMPIDControl::”.

void ManipulatorControl::calculatePositionControl()
{
 // PD control plus acceleration feedforward
 for (int i = 0; i < d_numJoints; i++)
 {
 d_controlTorque[i] += d_kp[i] * d_positionErrorRad[i]
 + d_kd[i] * (d_desiredVelocityRad[i] - d_velocityRad[i])
 + d_feedforwardAccelerationGain[i] *
 d_desiredAccelerationRad[i];
 }
}

Figure 7. The PD Control Calculation in the Base Class

// ===== Class declaration of the derived class WAMPIDControl

class WAMPIDControl : public WAMControl [a]
{
 // ----- Constructors -----
public:
 WAMPIDControl (int argc, char *argv[])
 : WAMControl(argc, argv) {}
 ~WAMPIDControl () {};

 // ----- Manipulators -----
 virtual void calculatePositionControl();

 double d_ki[7]; // Integral Gain
 double d_prevPositionErrorRad[7]; // Position error of the
 // previous control cycle
 double d_positionErrorInt[7]; // Integrated position error
};

// ===== Reimplemented function calculatePositionControl()

void WAMPIDControl::calculatePositionControl()
{
 // Call the base class to do the PD control
 ManipulatorControl::calculatePositionControl(); [b]

 // Then add the integral term
 for (int i = 0; i < d_numJoints; i++) [c]
 {
 // Integrate the position error
 d_positionErrorInt[i] += 0.5 * d_controlPeriod
 * (d_positionErrorRad[i] + d_prevPositionErrorRad[i]);
 d_prevPositionErrorRad[i] = d_positionErrorRad[i];

 // Add the integral term to the control torque
 d_controlTorque[i] += d_ki[i] * d_positionErrorInt[i];
 }
}

Figure 8. The Derived Class WAMPIDControl

9 Conclusions
This paper presented an object-oriented design for a software
platform for robotic applications. Because of the complexity of
large-scale software environments, the QMotor RTK was designed
to be a lightweight modular platform. The RTK is a homogeneous,
object-oriented system that is purely implemented as PC software.
It utilizes a bottom-up design that is open and extensible from the
servo-level to the task level.
The QMotor RTK reuses code for implementing different
manipulator control programs and GUI programs. Specifically,
base classes and classes for the Puma 560 robot, the WAM, and
the IMI robot have been developed. Figure 9 relates the code size
of the common and specific RTK components to the total code
size. It illustrates that the implementation of new manipulators
require a significantly smaller coding effort once the common base
class is implemented. Note that a smaller coding effort also means
a smaller source of coding errors. All new manipulator classes can
refer to the well-tested base classes. The WAM control class, for
example, had been developed without the manipulator present.
Large parts of the RTK had already been tested with the Puma 560
robot. After the WAM arrived in the laboratories of Clemson
University, the control program for the WAM was debugged and
tuned within three days. The IMI control program was
implemented, debugged, and tuned in a single day.

Figure 9. Code Size Ratios for the Supported Manipulators

We have also illustrated how object-oriented principles can be
utilized to extend the system for new control algorithms shown
with the example of a PID control. This example demonstrates one
of the primary advantages of the RTK design: Coding effort of
extensions is significantly smaller compared to implementation
from scratch. Additionally, there is no need to modify source code
when extensions are needed.
Future research is directed towards a new design that allows
further simplification and a larger functionality while still
maintaining a lightweight design. A more complete class hierarchy
including sensors and tools is desired as well as classes for
Cartesian control. Finally, a three-dimensional graphical
simulation of the system’s components would improve the
system’s testing capabilities significantly by adding off-line
programming and testing.

References

[1] DOE Grant DE-FG07-96ER14728, “Advanced Sensing and

Control Techniques to Facilitate Semi-Autonomous
Decommissioning of Hazardous Sites”,
http://ece.clemson.edu/iaal/doeweb/doeweb.htm

[2] N. Costescu, M. Loffler, E. Zergeroglu, D. M. Dawson,
"QRobot - A Multitasking PC Based Robot Control
System", Microcomputer Applications Journal Special Issue
on Robotics, Vol 18 No. 1, pages 13-22.

[3] M. Loffler, N. Costescu, E. Zergeroglu, and D. Dawson,

"Telerobotic Decontamination and Decommissioning with
QRobot, a PC-Based Robot Control System", Proc. of the
Conference on Control Applications, Anchorage, AK, Sept.,
2000, pp. 24-29.

[4] J. Lloyd, M. Parker and R. McClain, "Extending the RCCL
Programming Environment to Multiple Robots and
Processors", Proc. IEEE Int. Conf. Robotics & Automation,
1988, pp. 465 – 469.

[5] QSSL, Corporate Headquarters, 175 Terence Matthews
Crescent, Kanata, Ontario K2M 1W8 Canada, Tel: +1 800-
676-0566 or +1 613-591-0931, Fax: +1 613-591-3579,
Email: info@qnx.com, http://qnx.com.

[6] P. Corke and R. Kirkham, "The ARCL Robot Programming
System", Proc. Int. Conf. Robots for Competitive Industries,
Brisbane, Australia, pp. 484-493.

[7] BA4-310 Software User Manual, Barrett Technologies, 139
Main St, Kendall Square, Cambridge, MA 02142,
http://www.barretttechnology.com/robot.

[8] Quality Real-Time Systems, LLC., 6312 Seven Corners
Center, Falls Church, VA 22044, Website: http://qrts.com.

[9] N. Costescu, M. Loffler, M. Feemster, and D. Dawson,
“QMotor 3.0 – An Object Oriented System for PC Control
Program Implementation and Tuning”, Proc. of the
American Control Conference, Arlington, VA, June, 2001,
to appear.

[10] Zhigao Yao, Nicolae P. Costescu, Siddharth P. Nagarkatti,
and Darren M. Dawson, "Real-Time Linux Target: A
MATLAB-Based Graphical Control Environment", Proc. of
the IEEE International Symposium on Computer-Aided
Control Systems Design, Anchorage, AK, Sept., 2000, pp.
173-178.

[11] The MathWorks, 3 Apple Hill Drive, Natick, MA 01760-
2098, http://www.mathworks.com.

[12] Quanser Consulting, 102 George Street, Hamilton, Ontario,
CANADA L8P 1E2, Tel: 1 905 527 5208, Fax: 1 905 570
1906, http://www.quanser.com.

[13] D. J. Miller and R. C. Lennox, "An Object-Oriented
Environment for Robot System Architectures", IEEE
Control Systems February 1991, pp. 14-23.

[14] &�� =LHOL VNL�� �2EMHFW-oriented robot programming", 1997,
Robotica volume 15, Cambridge University Press, pp. 41-
48.

[15] Chetan Kapoor, "A Reusable Operational Software
Architecture for Advanced Robotics ", Ph.D. thesis,
University of Texas at Austin, December 1996.

[16] B. Stroustrup, “What is ‘Object-Oriented Programming’? “,
Proc. 1st European Software Festival. February, 1991.

[17] B. Armstrong, O. Khatib, J. Burdick , “The Explicit
Dynamic Model and Inertial Parameters of the PUMA 560
Arm”, Proc. IEEE int. conf. Robotics and Automation 1,
1986, pp. 510-518.

