
ObjectObject--Oriented Techniques in Robot Oriented Techniques in Robot 
Manipulator Control Software DevelopmentManipulator Control Software Development

Department of Electrical and Computer Engineering, Clemson University

2001 American Control Conference

M. Loffler, D. Dawson, E. Zergeroglu, N. Costescu

ControlProgramControlProgram

ManipulatorControlManipulatorControl

WAMControlWAMControl IMIControlIMIControl PumaControlPumaControl



OutlineOutline

• Introduction
– Robotic Control Systems at Clemson’s CRB Group
– Review of Robot Control Platforms
– Focus of this Research 

• The QMotor Robotic Toolkit (RTK)
– Overview
– Object-Oriented Design
– Run-Time Issues
– QMotor
– Class Design
– GUI Components

• Conclusions

• Future Research



Introduction

• Robotic Control Systems at Clemson’s CRB Group
• Review of Robot Control Platforms
• Focus of this Research 



IntroductionIntroduction -- Robotic Control Systems at CRB Robotic Control Systems at CRB –– towards Flexibilitytowards Flexibility

RCCL Mark II ControllerBefore
1997

• UNIX/workstation based
• Procedural 
• No servo control flexibility
• Uses Puma 560

RCCL Servo Control on PC1997
• UNIX/QNX/PC based 
• Servo control flexibility
• No hard real-time in

trajectory generation

ARCL Servo Control on PC

1998
1999

• QNX/Windows/PC based
• Disassembly system
• Inhomogeneous components

Robot 
Simulator

Operator 
Interface

QMotor 
Robotic 

Toolkit (RTK)
2000

• Modular
• Object-oriented
• Data logging/plotting
• Control tuning
• Puma, WAM, IMI



Introduction Introduction –– Review of Robot Control PlatformsReview of Robot Control Platforms

MATLAB/Simulink

Platforms for Servo 
Control Development

QMotor

RTWT WinCon

D-Space

RTLT

Full Scale Robot 
Control 

Libraries

OSCAR ARCL

RCCL

Problems:
• Proprietary
• Very limited flexibility
• Hardware integration

Problems:
• Need to start at the lowest level

Simulink solutions:
• Limited flexibility
• Complex block diagrams
• High computational burden

Problems:
• Too complex
• Limited flexibility
• Expensive hardware

platforms required

Robot Control 
Languages

VAL II

V+
AML

IRDATA



Introduction Introduction –– Focus of this ResearchFocus of this Research

ModularityModularity

• Independent components 
• Easy to (re-) configure
• Easy Extension by adding new components
• Don’t need to understand the whole platform

for extensions

FlexibilityFlexibility
• Easy extension/modification
• Extend/modify on all system levels
• Reuse code

Real-Time 
Support

Real-Time 
Support

• Establish hard real-time
• No special hardware (e.g., DSP) required 
• Debug real-time code
• Log and plot control signals
• Parameter tuning



The QMotor Robotic Toolkit (RTK)

• Overview
• Object-Oriented Design
• Run-Time Issues
• QMotor
• Class Design
• GUI Components



QMotor RTK QMotor RTK –– OverviewOverview

The QMotor Robotic Toolkit

• Ready-to-execute programs and libraries

• Uses QMotor for real-time execution, logging, plotting and tuning

• Works only on the joint level

• Contains servo control, trajectory generator, teachpendant and utility programs

TeachpendantTeachpendant
Joint Level 
Trajectory 
Generator

Joint Level 
Trajectory 
Generator

WAM Servo 
Control 

(PD+Gravity 
Compensation)

WAM Servo 
Control 

(PD+Gravity 
Compensation)

STG Server 
(Interfaces the 

ServoToGo 
board)

STG Server 
(Interfaces the 

ServoToGo 
board)

WAM Control 
Panel

WAM Control 
Panel

QMotor 
Framework
QMotor 

Framework
QMotor 

Framework
QMotor 

Framework WAM



class WAMControl

QMotor RTK QMotor RTK –– Object Oriented Design / Design in ClassesObject Oriented Design / Design in Classes

Data Representation
Current Position
Control Torques

Control Parameters
Etc.

Functions
Calculate control law
Determine the position

Enable arm power
Etc.

Advantages:
• Intuitive modeling of the physical system

Class

Object

Object
• Multiple physical objects through

multiple software objects
• Inheritance



QMotor RTK QMotor RTK –– ObjectObject--Oriented Design / InheritanceOriented Design / Inheritance

class ManipulatorControl
Common 

Functionality

class PumaControl
Common 

Functionality

class WAMControl

Common 
Functionality

Object-Oriented Design
ManipulatorControlManipulatorControl

WAMControlWAMControlPumaControlPumaControl

Class Hierarchies

WAMControl

Copy

PumaControl

Common 
Functionality

Common 
Functionality

• Code reuse
• No redundancy



QMotor RTK QMotor RTK –– ObjectObject--Oriented Design / class ManipulatorControlOriented Design / class ManipulatorControl

Common Functionality of all Manipulators
• Communication with the motion control board
• Setting output torques by setting voltages of the digital to analog converters (DACs)
• Position readings through encoders
• Enabling/disabling arm power by setting digital outputs
• PD position control
• Determining velocities and accelerations by backwards difference and filtering
• Communication with client tasks (e.g., to receive a desired trajectory)
• Switching between control modes (e.g., zero gravity mode/position control mode)
• Safety checks for joint and torque limits
• Manual calibration of the manipulator to a new (known) position
• Generation of a simple test mode trajectory 



calculatePositionDerivates()calculatePositionDerivates()

control()control()

getCurrentPosition()getCurrentPosition()

calculateControlLaw()calculateControlLaw()

setJointTorques()setJointTorques()

checkTorqueLimits()checkTorqueLimits()

class WAMControl

Derive class

QMotor RTK QMotor RTK –– ObjectObject--Oriented Design / Deriving Manipulator ClassesOriented Design / Deriving Manipulator Classes

control()control()

getCurrentPosition()getCurrentPosition()

calculateControlLaw()calculateControlLaw()

setJointTorques()setJointTorques()

checkTorqueLimits()checkTorqueLimits()

calculatePositionDerivates()calculatePositionDerivates()

class ManipulatorControl

Uses A/D 
readings as 
joint angles

Sets D/A 
channels to 

torque 
values

Coupling 
Effects

Coupling 
Effects

getCurrentPosition()getCurrentPosition()

setJointTorques()setJointTorques()



Design Concepts Design Concepts –– Specific Manipulator Control ClassesSpecific Manipulator Control Classes

ControlProgramControlProgram

ManipulatorControlManipulatorControl

WAMControlWAMControl IMIControlIMIControl PumaControlPumaControl

Specific WAM Functionality
• Automatic encoder calibration
• Joint coupling
• Gravity compensation
• Torque ripple compensation
• Damping control instead of

disabling the arm power

Specific IMI 
Functionality
• No arm power

control

Specific Puma Functionality
• Automatic encoder calibration
• Joint coupling
• Gravity compensation



QMotor RTK QMotor RTK –– RunRun--Time IssuesTime Issues

How can an object-oriented design execute on a real 
machine?

Concurrency
• Some components need to execute concurrently 
• PC is fast enough (No need for special processors/hardware) 
• Components run as separate programs 

(Easy reconfiguration)

Communication
• Client/Server architecture
• Generic components

Real-Time Performance
• Need Real-Time Operating System -> QNX4
• C++ overhead can be neglected
• Need to be careful with dynamic memory allocation
• QMotor for control parameter tuning and data logging/plotting

Servo ControlServo ControlTrajectory 
Generator

Trajectory 
Generator

Messages

Replies
Client Server



QMotor RTK QMotor RTK –– QMotorQMotor

The QMotor Graphical User Interface
• Provides an intuitive user interface 
• Provides flexible real-time data plotting
• Provides control tuning

Main Window

Plot Window

Control Parameter Window



QMotor RTK QMotor RTK –– GUI ComponentsGUI Components

Teachpendant Manual Move Utility

Manipulator Control Panel



Conclusions

• Concluding Remarks
• Future Research



QMotor RTK QMotor RTK –– ConclusionsConclusions

The QMotor Robotic Toolkit

• Lightweight modular platform, entirely implemented as PC software

• Object-oriented homogeneous design allows code reuse and easier extension
for new hardware and new algorithms

• Addresses the issues of concurrency and real-time

• Data logging, control tuning and plotting from the QMotor GUI

• GUI components (Teachpendant, control panels)

WAM
20%

IMI
2%

Puma
15%

Common
63%

Code Reuse

• 63% of the system is independent of the manipulator
type, i.e., it can be reused for new manipulators

• Common code is well tested

• Implementation of new manipulators is very quick



QMotor RTK QMotor RTK –– Future ResearchFuture Research

Disadvantages of the QMotor Robotic Toolkit
• Does not work in Cartesian space
• No 3D robot simulator
• Startup/Shutdown inconvenient with many components

Q
N

X 
R

ea
l

Q
N

X 
R

ea
l -- T

im
e 

Ti
m

e 
Pl

at
fo

rm
Pl

at
fo

rm

O
pe

n 
In

ve
nt

or
O

pe
n 

In
ve

nt
or

Q
M

ot
or

Q
M

ot
or

O
bj

ec
t

O
bj

ec
t -- O

rie
nt

ed
O

rie
nt

ed
Pr

og
ra

m
m

in
g

Pr
og

ra
m

m
in

g

St
an

da
rd

St
an

da
rd

Te
m

pl
at

e 
Li

br
ar

y
Te

m
pl

at
e 

Li
br

ar
y

Robotic Platform

Math Library 3D Simulation Cartesian Control Object Manager


