Object-Oriented Techniques in Robot
Manipulator Control Software Development

2001 American Control Conference

M. Loffler, D. Dawson, E. Zergeroglu, N. Costescu

ControlProgram

ManipulatorControl
*

Outline

Introduction
— Robotic Control Systems at Clemson’s CRB Group
— Review of Robot Control Platforms
— Focus of this Research

The QMotor Robotic Toolkit (RTK)
— Overview
Object-Oriented Design

Run-Time Issues
QMotor

Class Design

GUI Components
Conclusions

Future Research

Introduction

« Robotic Control Systems at Clemson’s CRB Group

» Review of Robot Control Platforms

 Focus of this Research

Introduction - Robotic Control Systems at CRB — towards Flexibility

 UNIX/workstation based
* Procedural

* No servo control flexibility
e Uses Puma 560

* UNIX/QNX/PC based

* Servo control flexibility

* No hard real-time in
trajectory generation

* QNX/Windows/PC based
 Disassembly system
» Inhomogeneous components

* Modular

» Object-oriented
 Data logging/plotting
* Control tuning

e Puma, WAM, IMI

Introduction — Review of Robot Control Platforms

Robot Control Platforms for Servo Full Scale Robot

Languages Control Development Control
Libraries

VALl Amp

MATLAB/Simulink D-Space RCCL

KAl RTWT .. WinCon
IRDATA ARCL

OSCAR
QMotor

Problems: Problems: Problems:

* Proprietary » Need to start at the lowest level * Too complex

* Very limited flexibility o o * Limited flexibility

* Hardware integration Simulink solutions. * Expensive hardware

* Limited ﬂexibility platforms required
* Complex block diagrams

* High computational burden

Introduction — Focus of this Research

* Independent components
 Easy to (re-) configure
Modularity Easy Extension by adding new components
* Don’t need to understand the whole platform
for extensions

 Easy extension/modification
Flexibﬂity » Extend/modify on all system levels
* Reuse code

* Establish hard real-time
Real-Time * No special hardware (e.g., DSP) required
* Debug real-time code
* Log and plot control signals
 Parameter tuning

Support

The QMotor Robotic Toolkit (RTK)

Overview
Object-Oriented Design
Run-Time Issues
QMotor

Class Design

GUI Components

QMotor RTK - Overview

The QMotor Robotic Toolkit

» Ready-to-execute programs and libraries

» Uses QMotor for real-time execution, logging, plotting and tuning
* Works only on the joint level

 Contains servo control, trajectory generator, teachpendant and utility programs

WAM Control
Panel

WAM Servo STG Server
Control (Interfaces the
(PD+Gravity ServoToGo
Compensation) board)

QMotor QMotor
Framework Framework

Joint Level
Teachpendant Trajectory
Generator

QMotor RTK - Object Oriented Design / Design in Classes

Data Representation
Current Position
Control Torques

Control Parameters

Advantages:

« Intuitive modeling of the physical system

» Multiple physical objects through
multiple software objects

* Inheritance

Functions
Calculate control law
Determine the position
Enable arm power

QMotor RTK - Object-Oriented Design / Inheritance

PumaControl

Common
Functionality
g

Object-Oriented Design

 Code reuse
 No redundancy

s

class Puma€ontrol

Common
Functionality =
y

Common
Functionality

WAMControl

G
Common

Functionality

ManipulatorControl

| L
PumaControl m

Comnon
Functionality

QMotor RTK - Object-Oriented Design / class ManipulatorControl

Common Functionality of all Manipulators

« Communication with the motion control board

* Setting output torques by setting voltages of the digital to analog converters (DACs)
* Position readings through encoders

» Enabling/disabling arm power by setting digital outputs

 PD position control

» Determining velocities and accelerations by backwards difference and filtering

« Communication with client tasks (e.g., to receive a desired trajectory)

» Switching between control modes (e.g., zero gravity mode/position control mode)
» Safety checks for joint and torque limits

* Manual calibration of the manipulator to a new (known) position

 Generation of a simple test mode trajectory

QMotor RTK - Object-Oriented Design / Deriving Manipulator Classes

Derive class

~ ™

class ManipulatorControl class WAMControl

control() control()

Uses A/D Coupling
readings as getCurrentPosition() getCurrentPosition() Effects

joint angles

calculatePositionDerivates() calculatePositionDerivates()
calculateControlLaw() calculateControlLaw()

Sets D/A checkTorqueLimits() checkTorqueLimits()

channels to _
torque Coupling
e setJointTorques() setJointTorques() Effects

Design Concepts — Specific Manipulator Control Classes

| ControlProgram

?

| ManipulatorControl
A

| WAMControl | IMIControl | PumaControl

Specific WAM Functionality Specific IMI Specific Puma Functionality

Functionality » Automatic encoder calibration

 Automatic encoder calibration
» Joint coupling * No arm power » Joint coupling
 Gravity compensation control Gravity compensation
 Torque ripple compensation
» Damping control instead of

disabling the arm power

QMotor RTK — Run-Time Issues

How can an object-oriented design execute on a real
machine?

Concurrency
* Some components need to execute concurrently
 PC 1s fast enough (No need for special processors/hardware)
« Components run as separate programs
(Easy reconfiguration)

Communication —
. . rajectory
e Client/Server architecture

 Generic components

Client Server

Real-Time Performance

* Need Real-Time Operating System -> QNX4

« C++ overhead can be neglected

* Need to be careful with dynamic memory allocation

* QMotor for control parameter tuning and data logging/plotting

QMotor RTK — QMotor

The QMotor Graphical User Interface

* Provides an intuitive user interface
* Provides flexible real-time data plotting

* Provides control tuning

?-aﬁ_ﬁ-_ﬂiﬂ Covrvd Fregres Wasray lmip

|
N oo adws Pidden SR e i P

Lol gn @l Fia mephifirvsmonies F

L
B
Corpwi T wegmer= i
i riges LT]
Fugead Ties
-

Main Window

Control Parameter Window

QMotor RTK — GUI Components

) Chitrend Fuiadlas

|
P Emal

e Possy TH | Cathim® | E=d _|

Manipulator Control Panel

Teachpendant

Tl Fopipwe JF TEn ipeip bbew s Coeed Fl-lllli L PTG B Bl i L]

Conclusions

* Concluding Remarks

e Future Research

QMotor RTK - Conclusions

The QMotor Robotic Toolkit

 Lightweight modular platform, entirely implemented as PC software

 Object-oriented homogeneous design allows code reuse and easier extension
for new hardware and new algorithms

 Addresses the issues of concurrency and real-time
 Data logging, control tuning and plotting from the QMotor GUI

» GUI components (Teachpendant, control panels)

Code Reuse

* 63% of the system is independent of the manipulator

type, 1.€., it can be reused for new manipulators
, « Common code 1s well tested

* Implementation of new manipulators is very quick

QMotor RTK - Future Research

Disadvantages of the QMotor Robotic Toolkit
* Does not work in Cartesian space

* No 3D robot simulator

« Startup/Shutdown inconvenient with many components

Robotic Platform

Math Library 3D Simulation Object Manager

Platform
Open Inventor
Object-Oriented
Programming
Standard
Template Library

QNX Real-Time

