# **Object-Oriented Techniques in Robot Manipulator Control Software Development**

2001 American Control Conference

M. Loffler, D. Dawson, E. Zergeroglu, N. Costescu

Department of Electrical and Computer Engineering, Clemson University



## Outline

### Introduction

- Robotic Control Systems at Clemson's CRB Group
- Review of Robot Control Platforms
- Focus of this Research

# • The QMotor Robotic Toolkit (RTK)

- Overview
- Object-Oriented Design
- Run-Time Issues
- QMotor
- Class Design
- GUI Components
- Conclusions
- Future Research

# Introduction

- Robotic Control Systems at Clemson's CRB Group
- Review of Robot Control Platforms
- Focus of this Research

#### Introduction - Robotic Control Systems at CRB – towards Flexibility



## Introduction – Review of Robot Control Platforms



## Introduction – Focus of this Research



- Independent components
- Easy to (re-) configure
- Easy Extension by adding new components
- Don't need to understand the whole platform for extensions

## Flexibility

- Easy extension/modification
- Extend/modify on all system levels
- Reuse code

Real-Time Support

- Establish hard real-time
- No special hardware (e.g., DSP) required
- Debug real-time code
- Log and plot control signals
- Parameter tuning

# The QMotor Robotic Toolkit (RTK)

- Overview
- Object-Oriented Design
- Run-Time Issues
- QMotor
- Class Design
- GUI Components

#### **QMotor RTK – Overview**

#### The QMotor Robotic Toolkit

- Ready-to-execute programs and libraries
- Uses QMotor for real-time execution, logging, plotting and tuning
- Works only on the joint level
- Contains servo control, trajectory generator, teachpendant and utility programs



#### **QMotor RTK – Object Oriented Design / Design in Classes**

Data Representation Current Position Control Torques Control Parameters Etc.



**Functions** Calculate control law Determine the position Enable arm power Etc.

# class WAMControl

## Advantages:

9

- Intuitive modeling of the physical system
- Multiple physical objects through <u>multiple software objects</u>
- Inheritance



#### **QMotor RTK – Object-Oriented Design / Inheritance**



# **Object-Oriented Design**

Class Hierarchies



#### **QMotor RTK – Object-Oriented Design / class ManipulatorControl**

#### **Common Functionality of all Manipulators**

- Communication with the motion control board
- Setting output torques by setting voltages of the digital to analog converters (DACs)
- Position readings through encoders
- Enabling/disabling arm power by setting digital outputs
- PD position control
- Determining velocities and accelerations by backwards difference and filtering
- Communication with client tasks (e.g., to receive a desired trajectory)
- Switching between control modes (e.g., zero gravity mode/position control mode)
- Safety checks for joint and torque limits
- Manual calibration of the manipulator to a new (known) position
- Generation of a simple test mode trajectory



#### **QMotor RTK – Object-Oriented Design / Deriving Manipulator Classes**



#### **Design Concepts – Specific Manipulator Control Classes**



#### **QMotor RTK – Run-Time Issues**

# How can an object-oriented design execute on a real machine?

#### Concurrency

- Some components need to execute concurrently
- PC is fast enough (No need for special processors/hardware)
- Components run as separate programs (Easy reconfiguration)

#### Communication

- Client/Server architecture
- Generic components



#### **Real-Time Performance**

- Need Real-Time Operating System -> QNX4
- C++ overhead can be neglected
- Need to be careful with dynamic memory allocation
- QMotor for control parameter tuning and data logging/plotting

#### **QMotor RTK – QMotor**

#### The QMotor Graphical User Interface

- Provides an intuitive user interface
- Provides flexible real-time data plotting

1940

and the second

- 12 -

**Herte** 

• Provides control tuning

(i) Uniote 10 Man Manne - wannenbei

Cantrol Program Western

Cardio Proposi Autorialian-secontal Cardio relion Pier Autorialian-second rolling

CONTRACT WEIGHTS

Control Cutal and



Plot Window

| Elipted Tate                                                                    | 52.1 sec                         |       |       |              |                |      |       |       |    |     |
|---------------------------------------------------------------------------------|----------------------------------|-------|-------|--------------|----------------|------|-------|-------|----|-----|
| CONTRACTOR OF TAXABLE PARTY.                                                    |                                  |       | Giau  | e 3.8 Game P | Warmedee Winds | w -  |       |       | G) | 6   |
| Oct 25 16:22 Laided control program<br>Oct 25 16:23 Laided control motion to    | Exit View Help                   |       |       |              |                |      |       |       |    |     |
| Oct 23 1822 Watton 904<br>Oct 23 1822 Watton 914<br>Maripulator Server Californ | Manual Research Views            |       |       |              |                |      |       |       |    |     |
|                                                                                 | 1.14                             | 15000 | 12000 | 7 4100       | 7 3800         | 700  | P 703 | 1566  | -  |     |
| Main Window                                                                     | 2.52                             | 130   | 158   | 27 25        | 1.22           | 7.5  | 7 2   | 27.75 |    |     |
|                                                                                 | il JaadhelivarilAccelerationGrim | Ω.    | 21    | 21           | 0              | = 00 | - 4   | MI    | 1  |     |
|                                                                                 | d_colourd#inction#araevler       | Ū.    | - 1   | 71           | T U.           | 7 H  |       | 7168  | 1  |     |
|                                                                                 | utaticFraturParavelar            | 0     | - 4   | 1.1          | P 0            | 0    | 1     | 7.8   |    |     |
|                                                                                 | IL Fiction Velacity Threshold    | (u    | 211   | 211          | - 0            | - 0  | -11   | 100   | 1  |     |
|                                                                                 |                                  |       | _     |              |                |      | _     |       |    | 100 |

Control Parameter Window

#### **QMotor RTK – GUI Components**

| •                | Hargester Carbol Fand - Patra SDI |         |         |        |          |        |  |  |
|------------------|-----------------------------------|---------|---------|--------|----------|--------|--|--|
|                  | John 1                            | Acted 2 | Detet 3 | June 4 | Linet W. | June 1 |  |  |
| Current Pourture | 1                                 | 1       | 1       | 0      | a        | 0      |  |  |
| Postton frest    | 1                                 | 16      | la la   | 0      | 0        | Hu 1   |  |  |

Manipulator Control Panel

Teachpendant



#### Manual Move Utility

| 9                        |          | 1000          |          | ene 188   |             |          | - 9      |
|--------------------------|----------|---------------|----------|-----------|-------------|----------|----------|
| He list losen staylow    | a Holp   |               |          |           |             |          |          |
| New Packar Debis Postice | F. Des   | Cravity Marin | Att Date | 1700 De P | avenue. The | ar 10    | Marry    |
| Paulini, Hann            | On them. | 1             | dead 2   | And 1     | deni 1      | James B. | Joint's  |
| titt sap takin           |          | -111.82       | 31,38    | -83.50    | 38.28       | 34.45    | 8.28     |
|                          |          | -97.82        | 87.11    | 147.44    | 88.24       | TTAL     | 11.79    |
| .p.4 00w5                |          | -125.00       | THE      | 34.54     | 30.94       | 78.85    | 41.73    |
| D18 5                    |          |               |          |           |             |          |          |
| Comuni (2)               |          |               |          |           |             |          |          |
| named drogs              |          | -134.93       | 108.82   | 1100      | inia        | ri.85.   | 12.22    |
|                          |          | +64.32        | 5121     | 1 22.28   | 1112.27     | 1652     | 1.118.72 |
| alcost ingate.           |          | -11.25        | 26.37    | 178.48    | 114-45      | -118     | -52.48   |
|                          | _        |               |          |           |             |          |          |

# Conclusions

- Concluding Remarks
- Future Research

#### **QMotor RTK – Conclusions**

#### The QMotor Robotic Toolkit

- Lightweight modular platform, entirely implemented as PC software
- Object-oriented homogeneous design allows code reuse and easier extension for new hardware and new algorithms
- Addresses the issues of concurrency and real-time
- Data logging, control tuning and plotting from the QMotor GUI
- GUI components (Teachpendant, control panels)



#### Code Reuse

- 63% of the system is independent of the manipulator type, i.e., it can be reused for new manipulators
- Common code is well tested
- Implementation of new manipulators is very quick

#### **QMotor RTK – Future Research**

Disadvantages of the QMotor Robotic Toolkit

- Does not work in Cartesian space
- No 3D robot simulator
- Startup/Shutdown inconvenient with many components

