
Design and Implementation of the Robotic Platform

Markus S. Loffler, Vilas Chitrakaran, Darren M. Dawson

Department of Electrical and Computer Engineering, Clemson University

Corresponding Author:

Markus Loffler

Department of Electrical and Computer Engineering

Clemson University

Clemson, SC 29634

Phone: (864) 656-7218

Fax: (864) 656-7220

E-Mail: loffler@ces.clemson.edu

Abstract

The diversity of robotic research areas along with the complex requirements of hardware and
software for robotic systems have always presented a challenge for system developers. Many
past robot control platforms were complex, expensive, and not very user friendly. Even though
several of the previous platforms were designed to provide an open architecture system, very few
of the previous platforms have been reused. To address previous disadvantages, this paper
describes the design and implementation of the Robotic Platform, an object-oriented development
platform for robotic applications. The Robotic Platform includes hardware interfacing, servo
control, trajectory generation, 3D simulation, a graphical user interface, and a math library. As
opposed to distributed solutions, the Robotic Platform implements all these components in a
homogenous architecture that utilizes a single hardware platform (a standard PC), a single
programming language (C++), and a single operating system (the QNX Real-Time Platform) while
guaranteeing deterministic real-time performance. This design leads to an open architecture that
is less complex, easier to use, and easier to extend. Particularly, the area of multiple cooperating
robots benefits from this kind of architecture, since the Robotic Platform achieves a high
integration of its components and provides a simple and flexible means of communication. The
architecture of the Robotic Platform builds on the following state-of-the-art technologies and
general purpose components to further increase simplicity and reliability: i) PC technology, ii) the
QNX Real-Time Platform, iii) the Open Inventor library, iv) object-oriented design, and v) the
QMotor control environment.

Keywords:

Robot Control, PC, Real-Time, Object-Oriented, QNX

 3

Design and Implementation of the Robotic Platform

Markus S. Loffler, Vilas Chitrakaran, Darren M. Dawson

Department of Electrical and Computer Engineering, Clemson University

Abstract
The diversity of robotic research areas along with the complex requirements of hardware and software for
robotic systems have always presented a challenge for system developers. Many past robot control
platforms were complex, expensive, and not very user friendly. Even though several of the previous
platforms were designed to provide an open architecture system, very few of the previous platforms have
been reused. To address previous disadvantages, this paper describes the design and implementation of
the Robotic Platform, an object-oriented development platform for robotic applications. The Robotic Platform
includes hardware interfacing, servo control, trajectory generation, 3D simulation, a graphical user interface,
and a math library. As opposed to distributed solutions, the Robotic Platform implements all these
components in a homogenous architecture that utilizes a single hardware platform (a standard PC), a single
programming language (C++), and a single operating system (the QNX Real-Time Platform) while
guaranteeing deterministic real-time performance. This design leads to an open architecture that is less
complex, easier to use, and easier to extend. Particularly, the area of multiple cooperating robots benefits
from this kind of architecture, since the Robotic Platform achieves a high integration of its components and
provides a simple and flexible means of communication. The architecture of the Robotic Platform builds on
the following state-of-the-art technologies and general purpose components to further increase simplicity
and reliability: i) PC technology, ii) the QNX Real-Time Platform, iii) the Open Inventor library, iv) object-
oriented design, and v) the QMotor control environment.

1 Introduction
Robot control systems are very demanding with regard to software and hardware performance
because their building blocks cover a wide range of disciplines found in robotics and software
development (see Figure 1). Hence, it is desirable to create a common generic platform that can
be reused by researchers for different applications. Considering the variety of robotic applications
and research areas, this is a challenging task. Due to the lack of flexibility and performance of
proprietary vendor-supplied robot control languages, previous research focused on building robot
control libraries on top of a commonly used programming language (e.g., “C”) that was executed
on a Unix workstation. RCCL [1] and ARCL [2] are examples of such libraries. Even though a new
level of flexibility and performance was achieved by using a common programming language,
many robot control platforms developed in the 80’s and early 90’s were inherently complex due to
the limitations of software packages and hardware components of that time. That is, most
operating systems did not support real-time programming (fostering projects like RCI [3] and
Chimera [4]). In addition, procedural programming languages like “C” tend to reach their limits
with regard to reusability for complex projects; furthermore, the limited performance of hardware
components forced system developers to utilize distributed architectures that integrated a mix of
proprietary hardware and software.

Over the last ten years, many innovations in the computing area have occurred. Specifically, the
advent of object-oriented software design [5] facilitated the management of more complex
projects while also fostering code reuse and flexibility. For example, the robot control libraries
RIPE [6], MMROC+ [7], OSCAR [8], and ZERO++ [9] utilized object-oriented techniques in robot
programming. We have also witnessed the proliferation of real-time Unix-like operating systems
for the PC [10], which facilitate the replacement of proprietary hardware components for real-time
control [11]. In the hardware sector, we have witnessed the advent of high-speed low-cost PCs,
fast 3D graphics video boards, and inexpensive motion control cards. Consequently, the PC
platform now provides versatile functionality, and hence, makes complex software architectures
and proprietary hardware components superfluous in most cases. The QMotor Robotic Toolkit

 4

(QMotor RTK) [12], for example, integrates real-time manipulator control and the graphical user
interface (GUI) all on a single PC platform.

Hardware Interfacing

Trajectory Generation

Real-Time Programming Concurrency

Interprocess
Communication

Object-Oriented System
Design

Hardware-Accelerated
3D Computer Graphics

Complex System Design

Real-Time Data Logging
And Plotting

Graphical User Interface

Robotic Mathematical
Functions

Programming Interface

Utility Programs
(Calibration, etc.)

NetworkingSupport for Different
Robots, Sensors, and Tools

Figure 1. Building Blocks of a Modern Robot Control System

Despite the extensive functionality of the PC platform, much of the research in robot control
software utilizes distributed and inhomogeneous architectures [6][8][9]. Besides the obvious
advantages of distributed systems (e.g., greater extensibility and more computational power),
there are several disadvantages. Specifically, a distributed architecture requires a sophisticated
communication framework, which increases the complexity of the software significantly.
Additionally, deterministic real-time communication over network connections often requires
expensive proprietary software and hardware. Specifically, the integration of multiple cooperating
robots presents a challenge to distributed architectures. For example, it is often desired to modify
the trajectory of one manipulator depending on certain signals of a cooperating manipulator (e.g.,
the feedback of a force/torque sensor). In a distributed architecture, an additional effort must be
spent on passing these signals between the components. Passing these signals and
guaranteeing the required deadlines might even be impossible, depending on the flexibility of the
system’s components and the communication infrastructure.

Generally, the overall hardware cost of distributed systems is higher and users have to familiarize
themselves with different hardware architectures and operating systems. Even though many
platforms developed in the last couple of years attempted to be flexible, reconfigurable, and open,
these platforms are seldom used and extended. Apparently, engineers consider it faster and
easier to develop their applications from scratch. Indeed, from our own experience, the learning
curve of installing, learning, and modifying robot control platforms of the past is steep.

Given the above remarks, the Robotic Platform is the first platform that has been designed to
integrate servo control loops, trajectory generation, task level programs, GUI programs, and 3D
simulation in a homogeneous software architecture. That is, only one hardware platform (the PC),
only one operating system (the QNX Real-Time Platform [10]), and only one programming
language (C++ [13]) are used. This type of architecture has the following advantages:

Simplicity. A homogeneous non-distributed architecture is much smaller and simpler than a
distributed inhomogeneous architecture. It is easier to configure, easier to understand, and easier
to extend. Simplicity is critical with regard to motivating code reuse of the platform for different
applications.

Flexibility at all Levels. All components of the platform are open for extensions and
modifications. Many past platforms have utilized an open architecture at some levels, but other
levels had been implemented on proprietary hardware such that they could not be modified.

High Integration. Since all components run on the same platform, a high integration is achieved,
which allows for a simpler and more efficient cooperation between components. That is,
communication between the components has little overhead and is often implemented by just a
function call. Also, GUI components and 3D simulation are integrated with functional components.

 5

2 Powerful Tools And Technologies – The Basis for the Robotic
Platform

To reduce development effort and complexity, the Robotic Platform is based on general-purpose
tools and technologies.

PC Technology. While in the past only expensive UNIX workstations provided the processing
power necessary to control robotic systems, the PC has caught up or even exceeded the
performance of workstations [11]. Compared to UNIX workstations, a PC based system allows for
a greater variety of hardware and software components. Additionally, these components and the
PC itself are usually cheaper than their UNIX counterparts.

The QNX Real-Time Platform. The QNX Real-Time Platform (RTP) by QSSL [10] consists of the
QNX6/Neutrino operating system and additional components for development and multimedia.
QNX6 is an advanced real-time operating system that provides a modern microkernel-based
architecture, a POSIX compliant programming interface, self-hosted development, 3D graphics
capabilities and an easy device driver architecture. The RTP is also very cost-effective as it is
free for non-commercial use and runs on low-cost standard PCs.

Object-Oriented Programming in C++. With regard to developing robot control software, object-
oriented programming has several benefits over procedural programming. First, it provides
language constructs that allow for a much easier programming interface. For example, a matrix
multiplication can be expressed by a simple “*”, similar to MATLAB programming. Second,
object-oriented programming allows for a system architecture that is very flexible but yet simple.
That is, the components (classes) of the system can have a built-in default behavior and default
settings. The programmer can utilize this default behavior to reduce the code size or override it
for specific applications. Finally, object-oriented programming supports generic programming,
which facilitates the development of components that are independent from a specific
implementation (e.g., a generic class “Manipulator” that works with different manipulator
types). All of the above benefits are based on the general concepts of object-oriented
programming: i) abstraction, ii) encapsulation, iii) polymorphism, and iv) inheritance [5, 12]. The
language of choice is C++, as it provides the whole spectrum of object-oriented concepts while
maintaining high performance [13].

Open Inventor. Open Inventor [14], developed by Silicon Graphics, is an object-oriented C++
library for creating and animating 3D graphics. Open Inventor minimizes development effort, as it
is able to load 3D models that are created in the Virtual Reality Modeling Language (VRML)
format. A variety of software packages are available that facilitate the construction of 3D VRML
models that represent robotic components. The Robotic Platform also utilizes the functionality of
Open Inventor to animate these components.

The QMotor System. Implementation of control strategies requires the capability to establish a
deterministic real-time control loop, to log data, to tune control parameters, and to plot signals.
For this purpose, the graphical control environment QMotor [15] is used for the Robotic Platform.

3 The Design and Implementation of the Robotic Platform

3.1 Design Overview
Each component of the Robotic Platform (e.g., manipulators, the trajectory generator, etc.) is
modeled by a C++ class. A C++ class definition combines the data and the functions related to
that component. For example, the class “Puma560” contains the data of a Puma 560 robot (e.g.,
the current joint position) as well as functions related to the Puma (e.g., enabling of the arm
power). Hence, the design of the Robotic Platform results from grouping data and functions in a
number of classes in a meaningful and intuitive way. A class can use parts of the functionality and
the data of another class (called the base class) by deriving this class from the base class. This
process is called inheritance, and it attributes heavily to code reuse and eliminates redundancy in

 6

the system. To extend the system, the user creates new classes. Usually, new classes will be
derived from one of the already existing classes to minimize coding effort. The classes of the
Robotic Platform include GUI components and a 3D model for graphical simulation. These types
of components were traditionally found in separate programs (e.g., see the RCCL robot simulator
[1]). However, by including them in the same class, we can achieve a tight integration of the user
interface, 3D modeling, and other functional parts. Additionally, object-oriented concepts for
system extensions can also be used for GUI components and 3D modeling.

To illustrate how classes are derived from each other, class hierarchy diagrams are used. The
main class hierarchy diagram of the Robotic Platform is shown in Figure 2. Each arrow is drawn
from the derived class (the more specific class) to the parent class (the more generic class). The
classes of the Robotic Platform can be separated into the following categories:

Core Classes. The classes RoboticObject, FunctionalObject, and PhysicalObject
build the basis of all robotic objects. The classes RoboticPlatform and ObjectManager
contain functionality for overall management of robot control programs.

Generic Robotic Classes. Derived from the core classes are a number of generic robotic
classes. These classes cannot be instantiated. Rather, these classes serve as base classes that
implement common functionality while also presenting a generic interface to the programmer (i.e.,
these classes can be used to create programs that are independent from the specific hardware or
the specific algorithm).

Specific Robotic Classes. Derived from the generic robotic classes are classes that implement
a specific piece of hardware (e.g., the class Puma560 implements the Puma 560 robot) or a
specific functional component (e.g., the class DefaultPositionControl implements a
proportional integral derivative (PID) position control).

The ControlProgram Class. This class is part of the QMotor system. All Classes that require a
real-time control loop are derived from the ControlProgram class.

RoboticObject

FunctionalObject

PhysicalObject

Manipulator

Trajectory
Generator

Gripper

ToolChanger

ForceTorqueSensor

ServoControl

Core Classes Generic Robotic Classes Specific Robotic Classes

Default
Manipulator

DefaultTrajectoryGenerator

Puma560

BarrettBase

BarrettHand

AtiFTSensor

DefaultPositionControl

BarrettArmWAM

Queue
Trajectory
Generator

OnOffTool

DefaultGripper

DefaultToolChangerControlProgram

QMotor

RoboticPlatform

ObjectManager

Figure 2. Class Hierarchy of the Robotic Platform

 7

In addition to the classes shown in Figure 2, the Robotic Platform provides the classes of the
math library, the manipulator model classes, and several utility classes. These classes and their
class hierarchy will be described later in this paper.

In a robot control program, the user instantiates objects from classes. When instantiating an
object, memory for the object is reserved, and the object initializes itself. The user can create as
many objects as desired from the same class. For example, it is straightforward to operate two
Puma robots by simply creating two objects of the class Puma560. As soon as objects are
created, the user can employ their functionality. The object manager maintains a list of all
currently existing objects. With the object manager, it is possible to initiate functionality on
multiple objects (e.g., to shutdown all objects). The Scene Viewer is the default GUI of the
Robotic Platform. It contains windows to view the 3D scene of the robotic work cell and a list of all
objects. The overall run-time architecture is shown in Figure 3.

In a robotic system, different components are related to each other. To reflect this fact, object
relationships are established between objects. For example, objects can specify their physical
connection to each other. Object relationships are implemented by C++ pointers to the related
object. The object relationships in an example scenario are shown in Figure 4.

Figure 3. Run-Time Architecture of the Robotic Platform

Figure 4. Object Relationships in an Example Scenario

3.2 The Core Classes
The class RoboticObject is the base class for all robotic classes. It defines a generic interface
(i.e., a set of functions that can be used with all robotic classes of the Robotic Platform). For
example, a program can apply the startShutdown() function to any robotic object to initiate

User
Robot

Control
Program

 8

the shutdown of the object. To summarize, the following generic functionality is defined in the
class RoboticObject (see also Figure 5):

Error Handling. Every object must indicate its error status.

Interactive Commands. Each object can define a set of interactive commands (e.g., “Open
Gripper”) that the user can select in the object pop-up menu of the Scene Viewer.

Configuration Management. Each object can use the global configuration file to set itself up.

Shutdown Behavior. Each object is able to shutdown itself.

GUI Control Panel. Each object is able to create a control panel.

Message Handler. Each object has a message handler that can interpret custom messages.

Thread Management. Each object indicates if additional threads are required for its operation
and provides functions that execute those additional threads.

Note that the actual functionality is usually implemented in the derived class. However, the class
RoboticObject also implements simple default functionality. This feature supports code reuse
and simplicity by giving all classes derived from the class RoboticObject the choice to either
take over this default functionality and/or implement new functionality.

Figure 5. The Class RoboticObject

The class PhysicalObject is derived from the class RoboticObject. It is the base class for
all classes that represent physical objects (e.g., manipulators, sensors, grippers, etc.). It defines a
generic interface for these classes as illustrated in Figure 6. Specifically, the following generic
functionality is defined in PhysicalObject:

3D Visualization. Every physical object can create its Open Inventor 3D model. The Scene
Viewer loops through all physical objects to create the entire 3D scene.

Object Connections. A physical object can specify another object as a mounting location. By
using this object relationship, the Scene Viewer draws objects at the right location (e.g., the
gripper being mounted on the end-effector of the manipulator).

Position and Orientation. The position and orientation specify the absolute location of the object
in the scene (or the mounting location, if an object connection is specified).

Simulation Mode. Every physical object can be locked into simulation mode. That is, the object
does not perform any hardware I/O, instead, its behavior is simulated.

Figure 6. The Class PhysicalObject

 9

The class FunctionalObject currently does not contain any functionality. It is only added as a
symmetric counterpart to the class PhysicalObject. Functional robotic classes like the class
TrajectoryGenerator are derived from the class FunctionalObject.

3.3 Classes Related to the Control of Manipulators
The central components of any robotic work cell are manipulators. The class Manipulator is a
generic class that defines common functionality of manipulators with any number of joints.
Derived from the class Manipulator is the class DefaultManipulator, which contains the
default implementation for open-architecture manipulators. Open-architecture manipulators
provide access to the current joint position and the control torque/force of the manipulator and
hence, allow for custom servo control algorithms. Derived from the class DefaultManipulator
are the classes that implement specific manipulator types. Currently, two manipulators are
supported: the Puma 560 robot and the Barrett Whole Arm Manipulator (WAM) in both the 4-link
and 7-link configuration. More information about the specific control implementation of these robot
manipulators can be found in [12].

The class DefaultManipulator reads the current joint position and outputs the control signal
continuously in a QMotor control loop. The actual calculation of the servo control algorithm is
contained in a separate servo control object. The class of the servo control object must be
derived from the class ServoControl, which defines the interface of a servo control. The default
servo control is defined in the class DefaultPositionControl, which implements a PID
position control with friction compensation. Manipulator classes like Puma560 or WAM
automatically instantiate an object of the class DefaultPositionControl for the convenience
of the programmer. However, the programmer can switch to a different servo control anytime.

For the simulation of the manipulators, their dynamic model is required. Additionally, for Cartesian
motion, forward/inverse kinematics and the calculation of the Jacobian matrix are needed. All
these functions are located in the ManipulatorModel classes. The class hierarchy of the
ManipulatorModel classes is displayed in Figure 7.

Kinematics
Jacobian
Dynamics
Configurations

ManipulatorModel

PumaModel BarrettArmModel WAMModel

Figure 7. The ManipulatorModel Classes

The trajectory generation is performed in separate classes. The base class
TrajectoryGenerator defines the interface of a generic trajectory generator. A trajectory
generator is any object that creates a continuous stream of setpoints and provides this stream to
a manipulator. The manipulator calls the getCurrentSetpoint() function of the trajectory
generator to determine the current desired position. It is possible to switch between multiple
trajectory generators. The class QueueTrajectoryGenerator, which is derived from the class
TrajectoryGenerator, is a generic interface of a trajectory generator that creates the
trajectory along via and target points. The class DefaultTrajectoryGenerator, which is
derived from QueueTrajectoryGenerator, is the specific implementation of a trajectory
generator that interpolates both in joint space and Cartesian space, including path blending
between two motion segments at the via points.

To summarize, the manipulator classes only provide an interface to the manipulator itself. They
do not include servo control and trajectory generation. These are performed in separate objects

 10

that are connected to the manipulator object. Figure 8 illustrates this relationship in an example
scenario.

Manipulator
Trajectory
Generator

uses servo controlPID
Control

receives trajectory from

Figure 8. Object Setup for the Servo Control and the Trajectory Generation of a Manipulator

3.4 The End-Effector Classes
In a typical robotic work cell, different end-effectors are connected to a manipulator.
Consequently, the Robotic Platform provides several robotic classes that refer to end-effectors,
as given below:

Gripper Classes. The class Gripper is the generic interface class of grippers. It defines the
functions open(), close(), and relax(). The derived class DefaultGripper contains the
default implementation, which utilizes two digital output lines to control the gripper, one digital line
to open the gripper, and one to close it. The class BarrettHand is a specific class to operate
the BarrettHand [16], an advanced three-finger gripper.

Force/Torque Sensor Classes. The base class ForceTorqueSensor defines the interface of a
force/torque sensor. That is, it defines functions to read forces and torques. The derived class
AtiFTSensor is the implementation of the ATI Gamma 30/100 Force/Torque sensor.

Toolchanger Classes. The class ToolChanger is the generic interface class of a toolchanger.
It defines the functions lock(), unlock(), and relax(). The class DefaultToolChanger is
the default implementation of a toolchanger, which uses two digital output lines to control the lock
and unlock function of the toolchanger.

3.5 Configuration Management
The Robotic Platform utilizes a global configuration file, which is parsed by the object manager
and the objects themselves to determine the system’s configuration. This file is called rp.cfg by
default. The format of the configuration file is as follows. For each object, the configuration file
lists the object name in brackets, the class name of the object, and some additional settings (see
Figure 9). Table 1 lists possible object settings and their related member functions defined by the
classes RoboticObject and PhysicalObject. Derived classes are able to define additional
settings.

[leader]
class Puma560
qmotorConfig leader.cfg

[secondrobot]
class WAM
position 300 0 0
simulationMode on
display solid

[gripper]
class BarrettHand
port /dev/ser1

Figure 9. An Example Global Configuration File

 11

Name of Setting Description Equivalent Member Functions

class <className> Specifies the class name of
the object

-

qmotorConfig
<configFileName>

Specifies a specific QMotor
configuration file.

-

position <x,y,z>
orientation <r,p,y>

Specifies the position and
orientation of the object

PhysicalObject::setTransform()

simulationMode on
simulationMode off

If “on” is specified, use
simulation mode for this object

PhysicalObject::setSimulationModeOn()
PhysicalObject::setSimulationModeOff()

display off
display solid
display wireframe

Specifies if and how the object
is displayed in the Scene
Viewer

PhysicalObject::setDisplayOff()
PhysicalObject::setDisplaySolid()
PhysicalObject::setDisplayWireframe()

Table 1. Object Settings of the Configuration File

3.6 The Object Manager
The class ObjectManager implements the object manager. Every time a new object is
instantiated in the user’s robot control program, the object registers itself with the object manager.
Similarly, every time an object is destroyed, it is removed from the object list of the object
manager. The object manager contains functionality to loop through this list to perform operations
on multiple objects. For example, the Scene Viewer retrieves a list of all objects that are derived
from the class PhysicalObject to render each of them, and thereby, is able to render the
entire 3D scene.

The functionality of the object manager is also necessary to allow for generic code. Generic code
operates any object (e.g., a manipulator object of class Puma) through the appropriate interface
class (e.g., the class Manipulator) by using C++ virtual functions. Hence, generic code does
not need to be changed when an object of a different class is used (e.g., the class WAM), as long
as this object is derived from the same interface class. Generic code is very useful for code-reuse
(e.g., only a single generic trajectory generator must be written which can be used with different
manipulator types). The following excerpt of generic code is manipulator independent code that
works with the Puma robot, the WAM, or any robot that is added in the future (see also the
excerpt of the class hierarchy in Figure 10).

 Manipulator *manipulator; // Any manipulator
 ObjectManager om; // The object manager

 manipulator = om.createDerivedObject<Manipulator>(“leader”);
 // Creates either a Puma or a WAM object, depending on
 // what is specified in the global configuration file under the name “leader”

 // Now, we can do generic operations
 manipulator->enableArmPower();
 cout << “Current End-Effector Coordinate Frame: “
 << robot->getEndEffectorTransform();

The above code first calls the function createDerivedObject() to create an object of the
classes Puma560, BarrettArm, or WAM. Then, it operates this object via a pointer to the generic
base class (i.e., Manipulator *). In order to create the desired object, the
createDerivedObject() function looks for the object name in the global configuration file
(see Figure 9). Then, it reads the class name of the object from the configuration file and creates

 12

an object of this class1. Hence, to switch to a different manipulator type, only the class name in
the global configuration file has to be changed when using a generic program.

Manipulator
Default

Manipulator

Puma560

BarrettBase
BarrettArm

WAM

IMI

Figure 10. The Generic Class Manipulator and its Derived Classes

3.7 The Concurrency/Communication Model
An inherent characteristic of robotic systems is concurrency. That is, while it is often sufficient for
many software systems to run as a single task, robotic systems require components like the
servo control to be executed concurrently with other components (e.g., the trajectory generator).
The Robotic Platform runs all concurrent tasks on the same PC.

The predecessor of the Robotic Platform, the QMotor RTK [12], executes multiple programs to
achieve concurrency on a single processor. While this concept attributes to modularity, it is
inconvenient to manage the startup and termination of multiple programs. Hence, an application
that uses the Robotic Platform is compiled and linked to a single program instead. This program
spawns multiple threads if concurrent execution is required. Once the program terminates, all
threads are automatically terminated. Figure 11 shows an example user program. At program
start, only thread 1 is executing. At the initialization of the Robotic Platform library, a new thread
is created that executes the 3D Scene Viewer. Then, the user utilizes a new object of a
manipulator class. The instantiation of this manipulator object automatically spawns a third thread
for the servo control loop. Hence, the first thread can go ahead and specify a desired trajectory
for the manipulator, while the servo control loop and the Scene Viewer run in the background. To
ensure real-time behavior of time critical tasks, the threads run at different priorities (e.g., the
servo control loop runs at the high priority 27).

Servo control
loop

Create a new
manipulator

create new
thread

User program

Thread 1Thread 2

Specify desired
trajectory

Initialize the
Robotic Platform

Scene Viewer

create new
thread

Thread 3

Priority 9 Priority 10 Priority 27

Figure 11. Creating New Threads for Concurrency

1 To be able to create an object dynamically from its name, the framework of the Robotic Platform
creates a type database, which contains list of all classes defined in the robot control program.

 13

Since threads access the same global address space, this address space can be used for
communication between the threads. However, it is important to synchronize the access to avoid
corruption of data structures. To allow for synchronized communication between the threads,
message passing (as provided by the classes Client and Server) and standard thread
synchronization mechanisms are used (as implemented in the classes Barrier and
ReaderWriterLock).

3.8 Real-Time, Plotting, and Control Tuning Capabilities with QMotor
QMotor [15] is a complete environment for implementing and tuning control strategies. QMotor
consists of: i) a client/server architecture for hardware access, ii) a C++ library to create control
programs, and iii) the QMotor GUI, which allows for control parameter tuning, data logging and
plotting. To communicate with hardware, QMotor uses hardware servers that run in the
background and perform hardware I/O at a fixed rate. Servers for different I/O boards are
available (e.g., the ServoToGo board, the MultiQ board, and the ATI force/torque sensor interface
board). The use of hardware servers provides an abstract client/server communication interface
such that clients can perform the same generic operations with different servers. Hence, one can
quickly reconfigure the system to use different I/O boards by simply starting different servers. For
writing control programs, QMotor provides a library, which defines the class ControlProgram.
To implement a real-time control loop, the user derives a specific class from the class
ControlProgram and defines several functions that perform the control calculation and the
housekeeping. Once a control program is implemented and compiled, the user can start up the
QMotor GUI, load the control program, start it, and tune the control strategy from the control
parameter window (see Figure 12). Furthermore, the user can set logging modes and display log
variables in multiple plot windows (see Figure 13).

Figure 12. The QMotor Control Parameter Window

Figure 13. The QMotor Plot Window

 14

To utilize QMotor for the Robotic Platform, classes that require a real-time control loop (e.g., the
class DefaultManipulator) are derived from the class ControlProgram. Hence, these
classes inherit the functionality of a control program (i.e., real-time execution, data logging, and
communication with the QMotor GUI). If a class is derived from the class ControlProgram, the
base class RoboticObject automatically creates a new thread of execution that runs the
control loop in the background.

3.9 The Math Library
Past robot control libraries often introduced their own specific robotic data types. Most of these
data types are based on vectors or matrices (e.g., a homogeneous transformation is a 4x4
matrix). Hence, it is more feasible and flexible to use a general C++ matrix library and define
robotic types on top of it. Most of the matrix libraries available for C++ use dynamic memory
allocation, which risks the loss of deterministic real-time response [12]. Consequently, it would not
be possible to utilize these libraries in many real-time components of the Robotic Platform. To
overcome this disadvantage, special real-time matrix classes that use templates for the matrix
size were developed for the Robotic Platform. This means that the matrix size is known at
compile time and dynamic memory allocation is not required. Besides being feasible for real-time
applications, this approach also produces highly optimized code. Due to the use of templates and
inline functions, the matrix classes can be as fast as direct programming. That is, with optimized
implementation, the multiplication of two 2x2 matrices C = A * B is almost as fast as writing:

c11 = a11 * b11 + a12 * b21;

c12 = a11 * b12 + a12 * b22; etc.

An additional advantage is that the compiler can check for the correct matrix sizes at compile time
(e.g., a matrix multiplication of two matrices with incompatible size is detected during
compilation).

Figure 14 and Table 2 show the data types, the class hierarchy and the functionality of the math
library. The classes MatrixBase, VectorBase, Matrix, ColumnVector, RowVector, and
Vector are parameterized with the data type of the elements. The default element data type is
double, which is the standard floating-point data type of the Robotic Platform. The classes
MatrixBase and VectorBase are pure virtual base classes that allow for manipulation of
matrices and vectors of an unknown size. Matrices and vectors of an unknown size are required
during generic manipulator programming. Figure 15 shows an example program that uses the
math library to calculate a position equation.

MatrixBase<T>

Matrix<rows, columns, T>

ColumnVector<size, T> TransformRowVector<size, T>

VectorBase<T> LowpassFilter<T>

Integrator<T>

Differentiator<T>

Vector<size, T>

HighpassFilter<T>

MathException

Figure 14. Class Hierarchy of the Math Library

The math library also provides the classes LowpassFilter and HighpassFilter for numeric
filtering, and the classes Differentiator and Integrator for numeric differentiation and
integration. These classes are parameterized with the data type (i.e., they work with scalars,
vectors, and matrices). The class MathExeception is utilized to detect error conditions in the
math library.

 15

Matrix Functions Vector Functions Transformation Functions

Multiplication/division

Addition/difference

Transpose

Getting/setting elements

Getting/setting sub-matrices

Inverse

Unit/Zero matrix

Input/output from/to streams

Length (2-norm)

Cross-product

Dot-product

Element-by-element
multiplication

Translation matrix

Rotation matrix about x, y, or z axis

Rotation matrix about an arbitrary
vector

Conversion from/to Euler angles

Conversion from/to RPY angles

Table 2. Functions of the Matrix, Vector, and Transformation classes

Transform Z = translation(0, 0, 0.7);
Transform E = translation(0, 0, 0.1);
Transform W = translation(1, 0.2, 0.3)
 * xRotation(M_PI);
Transform P = translation(-0.5, 0, 0);

// Solve Z*T6*E == W*P
Transform T6;
T6 = inverse(Z) * W * P * inverse(E);

Figure 15. Example Program for the Math Library

3.10 Error Management and Safety Features
Each object is responsible to maintain an error status. If a fatal error occurs, any object can
request that the object manager shuts down the system. For example, this could be the case
when a control torque exceeds its limit. For such a system shutdown, the object manager loops
through all objects in the system and calls their startShutdown() function. Then, the object
manager waits until all objects have completed their shutdown. The completion of the object
shutdown is indicated by the isShutdownComplete() function.

3.11 Documentation
Critical for a high acceptance and a frequent reuse of a library is extensive documentation. The
Robotic Platform has been developed by first creating manuals of all components and then using
these manuals as requirement documents to guide the implementation. Documentation includes
tutorials, external documentation and inline documentation. Example programs are frequently
added, as they are essential for quick understanding of functionality. Doxygen [17] is an
automatic documentation generator, which creates a reference manual from the inline
documentation by processing the source files. Doxygen eliminates the redundancy of inline and
external documentation. Doxygen is very versatile, as it creates the documentation in html format
(for web publishing), latex format, and Microsoft Word rich text format (RTF).

3.12 The Graphical User Interface
GUI components are developed with the C++ GUI class library QWidgets++ [18]. QWidgets++
allows for object-oriented GUI programming. The GUI consists of three parts:

 16

• The Scene Viewer is the default supervising GUI, which is opened automatically at startup of
every Robotic Platform program.

• Additionally, each robotic class can have its own control panel. The control panels are opened
from the Scene Viewer.

• Finally, the Robotic Platform includes several utility programs (e.g., the Joint Move program
and the Teachpendant), which have a GUI.

The GUI is further explained in the next section.

4 Using the Robotic Platform

4.1 The Scene Viewer and the Control Panels
Whenever a program of the Robotic Platform is executed, the Scene Viewer window opens up. It
displays the entire 3D scene and also allows the user to open a window that displays a list of
currently running objects in the system (see Figure 16). To create a 3D scene, the Scene Viewer
loops through all objects that are derived from the class PhysicalObject and calls the
get3DModel() function to obtain the Open Inventor 3D data of that object. Then, the Scene
Viewer uses the object connection relationships (specified by the function setConnection() of
the class PhysicalObject) to reorganize the Open Inventor object tree to display the 3D
objects at the right position (e.g., to display a gripper being mounted at the end-effector of a
manipulator). Furthermore, the Scene Viewer continuously updates the 3D scene with the current
state of all objects (e.g., it uses the current joint position of a manipulator to display the joints in
the correct position). Hence, the 3D scene rendered in the Scene Viewer window always
represents the current state of the hardware (in simulation mode, the simulated state of the
hardware is represented). To select the best viewing position, the user can navigate in the 3D
scene using the mouse. As many Scene Viewer windows as desired can be opened to view the
3D scene from different viewing positions at the same time. The user can also open the Object
List window. This window displays a list of all objects that are currently instantiated by the robot
control program, including class name and object name.

 .

Figure 16. The Scene Viewer and the Object List Window

Each object has an individual pop-up menu (see Figure 17). This pop-up menu appears if the
user either: i) right clicks on the object in the Scene Viewer rendering area, or ii) right clicks on an

 17

entry in the Object List window. The pop-up menu has options to hide the object in the rendering
area or to select between wire frame and solid display. Additionally, the pop-up menu displays
interactive commands that are defined in the specific class of the object. For example, a gripper
object has additional menu items to open, close, and relax the gripper. Finally, the user can open
the control panel from the object pop-up menu. Each class can have an individual control panel.
Figure 18 shows the control panel of the WAM as an example.

Figure 17. The Object Pop-Up Menu

Figure 18. The Control Panel of the WAM Class

4.2 The Utility Programs
The Robotic Platform provides a couple of utility programs that help testing the system by
performing simple operations. The Joint Move utility (see Figure 19) is a program to test the
servo control of a manipulator. It contains a slider for each joint. The user can move the sliders
with the mouse and the manipulator follows immediately.

Figure 19. The Joint Move Utility

The Teachpendant (see Figure 20) uses the zero gravity mode of the manipulator to allow the
user to push the manipulator around in the workspace. Once the user has moved the manipulator
to a desired target position, this position can be added to a list of points. The Teachpendant also
utilizes the trajectory generator to move the manipulator back to stored positions. It is also
possible to cycle the manipulator through all or some of the stored positions.

 18

Figure 20. The Teachpendant

4.3 Writing, Compiling, Linking, and Starting Robot Control Programs
A robot control program is first compiled and then linked to the Robotic Platform library. The
entire Robotic Platform (i.e., all classes and the Scene Viewer) is contained in a single library. As
explained earlier, the system can easily be extended by adding new classes. If the extension is
specific to a certain robot control program, the classes can be added to the code of that robot
control program. If an extension is used in multiple robot control programs, it is probably more
convenient to add the new functionality to the Robotic Platform library. To reflect extensions in
preexisting compiled and linked programs, the Robotic Platform library is a dynamic library (i.e., a
program loads the library whenever it is started). Therefore, after the library is extended with new
functionality, even programs such as the Teachpendant will take advantage of the new
functionality without recompilation (e.g., the teachpendant will be able to operate new manipulator
types). Once the program is compiled and linked, the user can start it from the command line.

Figure 21 shows the listing of an example robot control program for a simple pick and place
operation. Every robot control program first calls RoboticPlatform::init(). This function
initializes the platform and starts up the Scene Viewer. The command line arguments are passed
to RoboticPlatform::init() such that any Robotic Platform program can be started with
certain default command line options (see Table 3). Additionally, these options can be controlled
from C++ code as well, by using the functions listed in the third column of Table 3. After
RoboticPlatform::init() is called, the user’s program creates all objects that are required
for the robotic task (i.e., a gripper object, a Puma 560 object, and a trajectory generator object are
created). The final part of the example program utilizes the trajectory generator object and the
gripper object to move the robot to the work piece, close the gripper, pick up the work piece, and
drop it at the target position.

Command
Line Switch

Description Equivalent in C++

-sim

-nosim

Enables/disables simulation mode
for all objects

RoboticPlatform::setSimulationModeOn()

RoboticPlatform::setSimulationModeOff()

-gui

-nogui

Enables/disables automatic start of
the Scene Viewer

RoboticPlatform::setGuiOn()

RoboticPlatform::setGuiOff()

-config
<filename>

Specifies the name of the global
configuration file

RoboticPlatform::setConfigurationFileName()

-qmotor Starts up the QMotor GUI -

Table 3. Default Command Line Options of Robotic Platform Programs

 19

// Simple pick and place operation

#include “RoboticPlatform.hpp”

void main(int argc, char *argv[])
{
 // Initialize the Robotic Platform framework
 RoboticPlatform::init(argc, argv);

 // Create the objects required for the task
 Puma560 puma;
 DefaultGripper gripper;

 // Create the trajectory generator and connect it
 // to the Puma object
 DefaultTrajectoryGenerator<6> tragen;
 puma.setTrajectoryGenerator(tragen);

 // Create a transform that represents the end-effector
 // orientation
 Transform down = xRotation(M_PI); // End-effector
 // pointing down

 // Move to the object and pick it up
 gripper.open();
 tragen.moveTo(translation(0, 0.5, 0) * down);
 tragen.stop(1);
 gripper.close();
 tragen.stop(1);

 // Move to the target position and drop the object
 tragen.moveTo(translation(0.5, 0.5, 1) * down);
 tragen.moveTo(translation(1, 1, 0) * down);
 tragen.stop(1);
 gripper.open();
 tragen.stop(1);
}

Figure 21. A Simple Pick and Place Program for the Robotic Platform

5 Programming Examples

5.1 Virtual Walls
The virtual walls program is a good example on how to create a custom servo control. It also
demonstrates the use of the manipulator model functions and the math library. Virtual walls are
virtual planes in the manipulator’s workspace that generate a reaction force once the manipulator
is moved into it. Given a plane with the plane equation (using homogeneous coordinates):







==

0

;0
d

n
wxw

where n is the normal vector of the plane, and 0d is the distance from the origin. If rEndEffectox is

the current end-effector position, then





>
<

==
 wallthe inside is effector-end

 wallthe outside is effector-end

0

0
rEndEffectoxwd

 20

Using the control law





>
<

=
, wallthe inside is effector-end

 wallthe outside is effector-end

0)(

00

dndkJ

d

f
Tτ

creates a joint torque that resists moving the robot into the wall.

To implement a new servo control algorithm, a class is derived from the class ServoControl (1)
(see Figure 22). The above virtual wall functions are implemented in the function calculate(),
which calculates the control output. In the function main(), the robot object is created as usual.
Additionally, an object of the virtual wall servo control class is created (2). Finally, the robot object
is instructed to utilize the new servo control instead of the default position control, and the gravity
compensation is enabled to allow the robot to be pushed around (3).

#include “RoboticPlatform.hpp”

// ----- Create a new servo control class -----

template <int numJoints>
class VirtualWallServoControl : public ServoControl (1)
{
 public:
 virtual void calculate()
 {
 // What is the distance of the end-effector to the wall?
 Transform t = d_manipulator->getEndEffectorPosition();
 double distance =
 dotProduct(d_wallCoefficients, t.getColumn(4));
 if (distance > 0) // No control output
 return;

 // We are inside the wall. Generate reacting force
 Vector<3> force = distance * d_wallCoefficients * d_kf;

 // Convert to joint torque
 Vector<numJoints> pos = d_manipulator->getJointPositon();
 Vector<numJoints> torque;
 d_manipulator->endEffectorForceToJointTorque(pos, force, torque);

 // Do the control output
 d_manipulator->setControlOutput(torque);
 }

 Vector<4> d_wallCoefficients;
 double d_kf;
};

// ----- Use the virtual walls servo control -----

void main(int argc, char *argv[])
{
 RoboticPlatform::init(argc, argv);

 Puma560 puma; // Create the robot object

 // Virtual wall control for 6 joints
 VirtualWallServoControl<6> wallControl; (2)
 wallControl.d_kf = 0.01;
 wallControl.d_wallCoefficients = 0, 0, -1, 3;

 puma.setGravityCompensationOn(); (3)
 puma.setServoControl(wallControl);
}

Figure 22. Virtual Walls Example

 21

5.2 Comparison of Simulation and Implementation
A very interesting option is to forward the set points created by a trajectory generator to two
manipulators. In this way, the motion of two manipulators with the same kinematics can be
compared, or the behavior of a real manipulator can be compared with a dynamic simulation. The
latter application is implemented in the robot program in Figure 23. First, two objects of the class
Puma560 are created, and one of them is set into the simulation mode. Then, both objects are
connected to the same trajectory generator to receive the same set points.

#include “RoboticPlatform.hpp”

void main(int argc, char *argv[])
{
 // Initialize the Robotic Platform framework
 RoboticPlatform::init(argc, argv);

 // Create the robot objects
 Puma560 puma;
 Puma560 pumaSimulated;

 // The second robot is simulated
 pumaSimulated.setSimulationModeOn();

 // Connect both to the same trajectory generator
 DefaultTrajectoryGenerator tragen;
 puma.setTrajectoryGenerator(tragen);
 pumaSimulated.setTrajectoryGenerator(tragen);

 Vector<6> target;

 // Create the trajectory
 target = 0, 45, -90, 0, 0, 0;
 tragen.move(target);

 target = -50, 0, -70, 50, -80, 0;
 tragen.move(target);
}

Figure 23. Example Program that Forwards the Same Trajectory to Two Robots

Conclusions
The Robotic Platform is a software framework to support the implementation of a wide range of
robotic applications. As opposed to past distributed architecture-based robot control platforms,
the Robotic Platform presents a homogeneous, non-distributed object-oriented architecture. That
is, based on PC technology and the QNX RTP, all non real-time and real-time components are
integrated in a single C++ library. The architecture of the Robotic Platform provides efficient
integration and extensibility of devices, control strategies, trajectory generation, and GUI
components. Additionally, systems implemented with the Robotic Platform are inexpensive and
offer high performance. The Robotic Platform is built on the QMotor control environment for data
logging, control parameter tuning, and real-time plotting. A new, real-time math library simplifies
operations and allow for an easy-to-use programming interface. Built-in GUI components like the
Scene Viewer and the control panels provide for a comfortable operation of the Robotic Platform
and a quick ramp-up-time for users that are inexperienced in C++ programming.

 22

References

[1] J. Lloyd, M. Parker and R. McClain, “Extending the RCCL Programming Environment to
Multiple Robots and Processors”, Proc. IEEE Int. Conf. Robotics & Automation, 1988, pp.
465 – 469.

[2] P. Corke and R. Kirkham, “The ARCL Robot Programming System”, Proc. Int. Conf. Robots
for Competitive Industries, Brisbane, Australia, pp. 484-493.

[3] J. Lloyd, M. Parker and G. Holder, “Real Time Control Under UNIX for RCCL”, Proceedings
of the 3rd International Symposium on Robotics and Manufacturing (ISRAM ’90).

[4] D.B. Stewart, D.E. Schmitz, and P.K. Khosla, “CHIMERA II: A Real-Time UNIX-Compatible
Multiprocessor Operating System for Sensor-based Control Applications”, tech. report CMU-
RI-TR-89-24, Robotics Institute, Carnegie Mellon University, September, 1989.

[5] B. Stroustrup, “What is ‘Object-Oriented Programming’?“, Proc. 1st European Software
Festival. February, 1991.

[6] D. J. Miller and R. C. Lennox, “An Object-Oriented Environment for Robot System
Architectures”, IEEE Control Systems February 1991, pp. 14-23.

[7] &�� =LHOL VNL�� ³2EMHFW-oriented robot programming”, 1997, Robotica volume 15, Cambridge
University Press, pp. 41-48.

[8] Chetan Kapoor, “A Reusable Operational Software Architecture for Advanced Robotics”,
Ph.D. thesis, University of Texas at Austin, December 1996.

[9] C. Pelich & F. M. Wahl, “A Programming Environment for a Multiprocessor-Net Based Robot
Control Unit”, Proc. 10th Int. Conf. on High Performance Computing, Ottawa, Canada, 1996.

[10] QSSL, Corporate Headquarters, 175 Terence Matthews Crescent, Kanata, Ontario K2M
1W8 Canada, Tel: +1 800-676-0566 or +1 613-591-0931, Fax: +1 613-591-3579, Email:
info@qnx.com, http://qnx.com.

[11] N. Costescu, D. M. Dawson, and M. Loffler, “QMotor 2.0 - A PC Based Real-Time
Multitasking Graphical Control Environment”, June 1999 IEEE Control Systems Magazine,
Vol. 19 Number 3, pp. 68 - 76.

[12] M. Loffler, D. Dawson, E. Zergeroglu, N. Costescu, “Object-Oriented Techniques in Robot
Manipulator Control Software Development”, Proc. of the American Control Conference,
Arlington, VA, June 2001, to appear.

[13] B. Stroustrup, “An Overview of the C++ Programming Language”, Handbook of Object
Technology, CRC Press. 1998. ISBN 0-8493-3135-8.

[14] Josie Wernecke, “The Inventor Mentor”, Addison-Wesley, ISBN 0-201-62495-8.

[15] N. Costescu, M. Loffler, M. Feemster, and D. Dawson, “QMotor 3.0 – An Object Oriented
System for PC Control Program Implementation and Tuning”, Proc. of the American Control
Conference, Arlington, VA, June 2001, to appear.

[16] Barrett Technologies, 139 Main St, Kendall Square, Cambridge, MA 02142,
http://www.barretttechnology.com/robot.

[17] Doxygen homepage, http://www.stack.nl/~dimitri/doxygen/

[18] Quality Real-Time Systems, LLC., 6312 Seven Corners Center, Falls Church, VA 22044,
Website: http://qrts.com.

